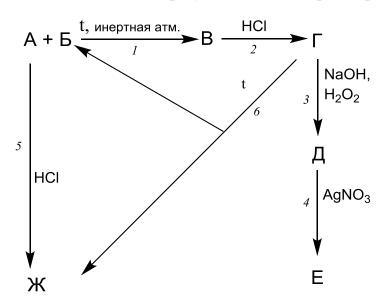
РЕГИОНАЛЬНАЯ ПРЕДМЕТНАЯ ОЛИМПИАДА


студентов ВУЗов Санкт-Петербурга ПО ХИМИИ

Олимпиадное задание

Планируемая продолжительность выполнения задания 4 часа

Задание № 1. Неорганическая химия (30 баллов)

Два простых вещества **A** и **Б** прокалили в инертной атмосфере. Затем продукт прокаливания **B** обработали соляной кислотой. Выделившийся газ Γ пропустили через щелочной раствор пероксида водорода. К образовавшемуся в растворе продукту Д прилили достаточное количество раствора нитрата серебра, выпал осадок **E** цвета «кофе с молоком» массой 92.6 г. Если же соляной кислотой обработать только вещество **A**, образуется газ **Ж** объемом 8 л, измеренный при температуре 27 °C и давлении 1 атм, и бесцветный раствор. Этот же газ **Ж**, а также вещество **Б** образуются, если нагреть продукт Γ .

- 1. Определите вещества A-Ж, напишите уравнения реакций 1-6.
- 2. Рассчитайте массу исходной смеси $\mathbf{A} + \mathbf{F}$.
- 3. Определите качественный и количественный (объемные %) состав газа Г.
- 4. Определите объем (если таковой будет) непрореагировавшего (н.у.) газа в реакции 3.

Задание № 2. Органическая химия (30 баллов)

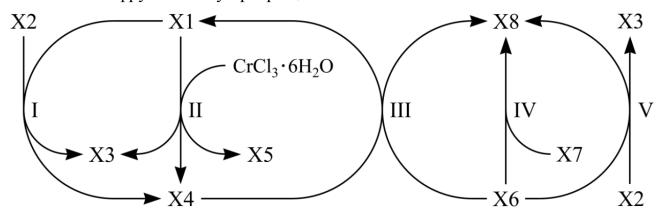
Приведите схемы химических реакций согласно следующей цепочке превращений. Изобразите R,R-изомер вещества F в виде трехмерной молекулы и проекции Фишера.

проекции Фишера.

A
$$\xrightarrow{\text{HBr}}$$
 B $\xrightarrow{\text{KCN}}$ C $\xrightarrow{\text{H}_2\text{O}\,/\,\text{H}^+}$ D $\xrightarrow{\text{Br}_2}$ E $\xrightarrow{\text{NH}_3}$ F $\xrightarrow{\Delta}$ C₁₂H₂₂N₂O₂
 $\xrightarrow{\text{KMnO}_4}$, H₂SO₄, $\xrightarrow{\Delta}$ I $\xrightarrow{\text{H}^+}$, 180°C J $\xrightarrow{\text{KMnO}_4}$ K + L

 $\xrightarrow{\text{KMnO}_4}$, H₂SO₄, $\xrightarrow{\Delta}$ $\xrightarrow{\text{R}}$ H₂O, Hg²⁺

пропин


Задание № 3. Физическая химия (30 баллов)

Рассчитайте скорость движения иона натрия в бесконечно разбавленном водном растворе при 298 К, если раствор находится в пространстве между плоскими параллельными электродами, к которым приложена постоянная разность потенциалов $\Delta \varphi = 20$ В. Расстояние между электродами l=2 см. Сколько времени потребуется иону, чтобы пройти расстояние от одного электрода к другому?

Справочные данные о предельной ионной электропроводности (Na⁺): $\lambda_0 = 50.1 \cdot 10^{-4} \ \tfrac{\text{Cm} \cdot \text{m}^2}{\text{моль}}.$

Задание № 4. Неорганическая химия (60 баллов)

Расшифруйте схему превращений:

Бесцветные жидкие¹ вещества **X1** и **X2** бурно реагируют (реакция **I**) с образованием газообразных продуктов **X3** и **X4**. В реакции **II** может участвовать любой из трех изомеров гексагидрата хлорида хрома (III) — зеленого, светло-зеленого и серо-голубого цвета. Для проведения реакции **III** используют белое твердое вещество **X6**, а помимо **X1** в ней образуется жидкое бесцветное вещество **X8**. Вещества **X2**—7 — бинарные соединения. Не существует ни одного жидкого вещества, молекулы которого имели бы меньшую массу, чем у молекул **X2**. Вещества **X1**, **X6** и **X8** находят широкое применение в препаративной, особенно органической, химии.

- 1. Установите вещества **X1–8** и напишите уравнения реакций **I–V**.
- 2. Какое строение имеют изомеры CrCl₃·6H₂O? У какого из них какой цвет?
- 3. Соединение **X6** в твердом состоянии имеет ионное строение, а в парах молекулярное. Опишите структуру этих ионов и молекул.

 $^{^{1}}$ здесь и далее агрегатные состояния отвечают комнатной температуре и атмосферному давлению

Задание № 5. Органическая химия (60 баллов)

При проведении с гетероциклическим кетоном \mathbf{A} синтетических стадий \mathbf{a} , \mathbf{b} и \mathbf{c} получается вещество \mathbf{D} . Если же стадию проводить не в диметилформамиде (DMF), а в тетрагидрофуране (THF), то получается вещество \mathbf{E} . При кипячении в водном уксусе вещество \mathbf{D} превращается в \mathbf{F} , которое при обработке избытком алюмогидрида лития образует вещество \mathbf{G} , молекула которого хиральна.

Если стадии **a**—**c** провести с кетоном **H**, то получается смесь двух продуктов (1:1). При этом структура **I** аналогична **D**, а структура **J** по скелету молекулы сильно отличается.

Расшифруйте структуры **B** (5 балл), **C** (5 балл), **D** (12 балла), **E** (8 балл), **F** (6 балл), **G** (12 балла) и **J** (12 балла).

Задание № 6. Физическая химия (60 баллов)

Вы экспериментатор. Предложите способ разделения смеси толуол (A) — бензол (B), мольные доли компонентов 77% и 23% соответственно. Постройте фазовую диаграмму состояния пар — жидкий раствор. Предложите способ выделения чистого бензола. Полученный бензол охладите до 40 °C и проведите реакцию нитрования. Рассчитайте константу равновесия реакции (по первой стадии), чтобы оценить выход реакции.

T, °C	80.1	84.0	88.0	96.0	100.0	108.0	110.8
$p_{0, A}$, кПа	_	43.38	49.67	64.57	73.31	93.75	101.33
$p_{0,{ m B}},{ m к}\Pi{ m a}$	101.33	115.55	130.96	167.92	184.39	234.10	_

Предполагаем, что участники ведут себя как идеальные, теплоёмкость не зависит от температуры.