Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 28.04.2023 12:38:25 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)» (СПбГТИ(ТУ))

УТВЕРЖДАЮ
Проректор по учебной и методической работе
Б.В.Пекаревский
«26» апреля 2021 года

Рабочая программа дисциплины

ЦИФРОВЫЕ МЕТОДЫ КОНТРОЛЯ СТРУКТУРЫ И СВОЙСТВ ПРОДУКЦИИ ХИМИЧЕСКИХ ПРОИЗВОДСТВ

Направление подготовки

09.04.01 – Информатика и вычислительная техника

Направленность программы магистратуры Информационное и программное обеспечение автоматизированных систем

> Квалификация Магистр Форма обучения Очная

Факультет механический

Кафедра теоретических основ материаловедения

Санкт-Петербург 2021

ЛИСТ СОГЛАСОВАНИЯ

Должность	Подпись	Ученое звание, инициалы, фамилия		
Доцент		доцент С.П. Богданов		

Рабочая программа дисциплины «Цифровые методы контроля структуры и свойств продукции химических производств» обсуждена на заседании кафедры теоретических основ материаловедения

протокол от «12» апреля 2021 № 6 Заведующий кафедрой

М.М. Сычев

Одобрено учебно-методической комиссией механического факультета протокол от «20» апреля 2021 $\mathfrak{N}\mathfrak{D}$ 7

Председатель А.Н. Луцко

СОГЛАСОВАНО

Руководитель направления подготовки	профессор Т.Б. Чистякова
«Информатика и вычислительная	
техника»	
Директор библиотеки	Т.Н. Старостенко
Начальник методического отдела	Т.И. Богданова
учебно-методического управления	
Начальник	С.Н. Денисенко
учебно-методического управления	

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	04
2. Место дисциплины в структуре образовательной программы	05
3. Объем дисциплины	05
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	06
4.2. Занятия лекционного типа	08
4.3. Занятия семинарского типа	08
4.3.1. Семинары, практические занятия	08
4.3.2. Лабораторные занятия	09
4.4. Самостоятельная работа обучающихся	10
5. Перечень учебно-методического обеспечения для самостоятельной работы	
обучающихся по дисциплине	11
6. Фонд оценочных средств для проведения промежуточной аттестации	11
7. Перечень учебных изданий, необходимых для освоения дисциплины	11
8. Перечень электронных образовательных ресурсов, необходимых для освоения	
дисциплины	12
9. Методические указания для обучающихся по освоению дисциплины	13
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	
10.1. Информационные технологии	13
10.2. Программное обеспечение	14
10.3. Базы данных и информационные справочные системы	14
11. Материально-техническое обеспечение освоения дисциплины в ходе реализации	
образовательной программы	14
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	15
Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации	116

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Для освоения образовательной программы магистратуры обучающийся должен овладеть следующими результатами обучения по дисциплине:

д и наименование индикатора	Планируемые результаты обучения		
достижения компетенции	(дескрипторы)		
1.2	Знать:		
мботка результатов результатов на химико- ологических объектах ктирования и управления с льзованием современных дов анализа научных данных	- программные продукты для теоретических исследований и моделирования материалов и процессов (3H-1); - современные методы химического и физико-химического анализа (3H-2). Уметь: - выбрать программный продукт для теоретического и экспериментального исследования (У-1); - выбрать метод математической обработки результатов теоретического и экспериментального исследования (У-2). Владеть: - математическим аппаратом для описания и анализа результатов		
1. об ер ол кт	результатов результатов риментов на химико-погических объектах гирования и управления с взованием современных		

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к дисциплинам части, формируемой участниками образовательных отношений (Б1.В.О1), и изучается на 1 курсе во 2 семестре.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплины «Организация научного проекта». Полученные в процессе изучения дисциплины «Цифровые методы контроля структуры и свойств продукции химических производств» знания, умения и навыки могут быть использованы при изучении дисциплины «Математические методы и программные средства моделирования химико-технологических процессов и систем», прохождении преддипломной практики, а также при выполнении выпускной квалификационной работы (магистерской диссертации).

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/акад. часов
Общая трудоемкость дисциплины	3/108
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	52
занятия лекционного типа	16
занятия семинарского типа, в т.ч.	32
семинары, практические занятия (в том числе практическая подготовка)	16 (2)
лабораторные работы (в том числе практическая подготовка)	16 (2)
курсовое проектирование (КР или КП)	-
КСР	4
другие виды контактной работы	-
Самостоятельная работа	56
Форма текущего контроля (Кр, реферат, РГР, эссе)	доклад
Форма промежуточной аттестации (КР, КП, зачет, экзамен)	Зачет

4. Содержание дисциплины. 4.1. Разделы дисциплины и виды занятий.

	Наименование раздела дисциплины	о типа,	семин	ятия арского па, . часы	работа,	Формируемые компетенции	Формируемые индикаторы
№ п/п		Занятия лекционного типа, акад. часы	Семинары и/или практические занятия	Лабораторные работы	Самостоятельная р акад. часы		
1	Введение	2				ПК-1	ПК-1.2
2	Теоретические методы исследования материалов	2	8		20	ПК-1	ПК-1.2
3	Методы планирования и обработки результатов экспериментов	2	4	4	10	ПК-1	ПК-1.2
4	Инструментальные методы исследования свойств материалов	10	4	12	26	ПК-1	ПК-1.2

4.2. Занятия лекционного типа.

№ раздела дис- ципли- ны	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
1	Введение 1. Особенности, отличие материалов от химических веществ. Стимулирующая роль потребностей техники для создания материалов с заданными свойствами. Научно обоснованный спланированный подход в создании функциональных материалов. 2. Прогноз по возможным свойствам новых материалов и методам их получения.	2	дискуссия
2	Теоретические методы исследования материалов 1. Теории, позволяющие качественно и количественно прогнозировать свойства материалов на основе особенностей их состава и структуры. Термодинамические методы. Подходы квантовой теории твердого тела. Теории свойств композиционных материалов. Теоретические основы создания наноматериалов. 2. Компьютерное моделирование материалов. Программы по моделированию молекул новых	2	

№ раздела дис- ципли-	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	соединений. Программы по моделированию кристаллов. Программы по моделированию (композиционных) материалов и изделий. Моделирование полей в материалах. 3. Методы ТРИЗ (теории решения изобретательских задач).		
3	Методы планирования и обработки результатов экспериментов 1. Подготовка к эксперименту. Методы планирования экспериментов. 2. Точность метода и средств измерения. 3. Методы статистической обработки экспериментальных данных. 4. Методы визуализации и формы представления результатов экспериментов.	2	дискуссия
4	Инструментальные методы исследования свойств материалов 1. Получение информации о материале при воздействии на него: - Электромагнитного поля разных частот (рентгеновские методы анализа, УФ-, Оптическая-, Ик-спектроскопия и микроскопия, атомноабсорбционный спектральный анализ). - Электрического поля (в т.ч. атомно-силовой микроскоп). - Магнитного поля (ЯМР, ЭПР, масс-спектроскопия). - Термического воздействия (в т.ч. ДТА). - Элементарных частиц (в т.ч. электронная микроскопия, нейтронный анализ, ОЖЭ спектроскопия). - Механических колебаний (в т.ч. УЗ дефектоскопия). - Томография. 2. Особенности методов исследования поверхности.	10	

4.3. Занятия семинарского типа.4.3.1. Семинары, практические занятия.

No		Объе	ем, акад. часы	
раздела	Наименование темы		в том числе на	Инновацион
дисциплин	и краткое содержание занятия	всего	практическую	ная форма
Ы	-		подготовку	
2	Теоретические методы	8		Дискуссия
	исследования материалов			по
	1. Поиск информации о составе,			результатам
	структуре, свойствах и применении			выступлений
	веществ и материалов в			с докладами
	стандартных базах данных.			
	2. Расчет термодинамических			
	параметров химической системы.			
	3. Моделирование методом			
	конечных элементов.			
	4. Изучение роста фракталов по			
	механизму «кластер-частица»			
	(компьютерное моделирование).			
3	Методы планирования и	4	1	Дискуссия
	обработки результатов			ПО
	экспериментов			результатам
	1. Подготовка к эксперименту.			выступлений
	Методы подготовки образца. Выбор			с докладами
	метода исследования и средства			
	измерения.			
	2. Сравнение точности средств			
	измерения.			
	3. Статистическая обработка			
	экспериментальных данных.			
	4. Подготовка результатов			
4	Инструментальные методы	4	1	Дискуссия
	исследования свойств материалов			ПО
	1. Анализ экспериментальных			результатам
	данных исследования структуры			выступлений
	материалов методом малоугловой			с докладами
	дифракции нейтронов.			
	2. Анализ структуры объекта с			
	использованием компьютерных			
	программ.			
	3. Свойства поверхности			
	нанообъектов, вопросы биосовместимости.			
	оиосовместимости. 4. Рентгенофазовый анализ.			
	4. Рентгенофазовый анализ. 5. Рентгеноструктурный анализ.			
	6. Исследование спектральных характеристик и обработка			
	Aupuktephetiik ii oopaootka			

4.3.2. Лабораторные занятия.

No		Объе	ем, акад. часы	
раздела	Наименование темы		в том числе на	Принамания
дисциплин	и краткое содержание занятия	всего	практическую	Примечание
Ы			подготовку	
3	Методы планирования и	4		
	обработки результатов			
	экспериментов			
	1. Сравнение твердости			
	конструкционных материалов.			
	2. Статистическая обработка			
	полученных экспериментальных			
4	Инструментальные методы	12	2	
	исследования свойств материалов			
	1. Качественный рентгенофазовый			
	анализ.			
	2. Количественный			
	рентгенофазовый анализ.			
	3. Рентгеноструктурный анализ.			
	4. Определение размера частиц			
	порошков.			
	5. Исследование структуры сплава.			
	6. Исследование цветовых			
	показателей люминофоров.			
	7. Определение содержания			
	микропримесей методом атомной			
	адсорбции.			
	8. Исследование спектров			
	пропускания, поглощения и			
	диффузного отражения.			
	9. Изучение спектров свечения			
	люминофоров.			
	10. Исследование материалов в УФ-			
	свете.			

4.4. Самостоятельная работа обучающихся.

№ раздела дис- ципли- ны	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
2	Теоретические методы исследования материалов - Сложные типы диаграмм равновесия Оптические свойства композитов и наноструктур Фотоэлектрические эффекты в металлах и диэлектриках Методы ТРИЗ.	20	Выступление на семинарских занятиях с докладом
3	Методы планирования и обработки результатов экспериментов - Методы оптимизации эксперимента.	10	Выступление на семинарских занятиях с

№ раздела дис- ципли- ны	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
	Проблемы управления качеством.Проблемы точности и эталоны.		докладом
	- Новые и традиционные методы поиска научной информации.		
	- Современная техника представления и распространения научной информации.		
4	Инструментальные методы исследования свойств	26	Выступление
	материалов		на семинарских
	- Развитие техники и возможностей		занятиях с
	экспериментальных методов анализа.		докладом
	- Микроскопические и дифракционные методы анализа светотехнических материалов.		

4.4.1. Темы докладов.

В качестве тем для доклада по 2 разделу «Теоретические методы исследования материалов» могут быть рекомендованы следующие темы:

- 1. Применение компьютерного моделирования в создании новых материалов.
- 2. Теоретические предпосылки создания материалов с экстремальными свойствами.
- 3. Развитие теоретических методов в современной науке.
- 4. Роль теоретической науки в развитии цивилизации.
- 5. Применение методов ТРИЗ в материаловедении.

В качестве тем для доклада по 3 разделу «Методы планирования и обработки результатов экспериментов» могут быть рекомендованы следующие темы:

- 1. Погрешности, разрешение, шумы, фон и методы улучшения качества эксперимента.
 - 2. Методы управления качеством.
 - 3. Проблемы точности и эталоны.
 - 4. Изучение и оптимизация технологического процесса.
 - 5. Новые и традиционные методы поиска научной информации.

В качестве тем для доклада по 4 разделу «Инструментальные методы исследования свойств материалов» могут быть рекомендованы следующие темы:

- 1. Роль развитие инструментальных методов анализа в науке.
- 2. Нанотехнологии двигатель методов анализа.
- 3. Центры коллективного пользования.
- 4. Международная кооперация в научных исследованиях.
- 5. Пределы изучения материи современными методами.
- 6. Метод исследования, который используется при выполнении научного исследования.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru.

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме зачета.

Зачет предусматривает выборочную проверку освоения предусмотренных элементов компетенции и комплектуется заданиями двух видов: теоретический вопрос (для проверки знаний) и практическая задача (для проверки умений и навыков).

При сдаче зачета студент получает два вопроса из перечня вопросов, время подготовки студента к устному ответу – до 30 мин.

Пример варианта заданий на зачете:

Вариант № 1

- 1. Погрешность метода и средства измерения.
- 2. Постройте графическую зависимость по заданным результатам измерения и объясните ее.

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенции достигнут пороговый уровень освоения компетенции на данном этапе – оценка «зачет».

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Кожухар, В.М. Основы научных исследований: Учебное пособие / В. М. Кожухар. Москва: Дашков и К, 2012. 216 с. ISBN 978-5-394-01711-7.
- 2. Основы научных исследований: учебное пособие по спец. "Менеджмент организации" / Б. И. Герасимов, В. В. Дробышева, Н. В. Злобина [и др.]. Москва: Форум, 2011. 267 с. ISBN 978-5-91134-340-8.
- 3. Раскин, А.А. Технология материалов микро-, опто- и наноэлектроники. Часть 1.: учебное пособие для вузов по направлению подготовки 210100 «Электроника и микроэлектроника»/ А.А. Раскин. Москва: Бином, 2010, 164 с. ISBN 978-5-94774-913-7.
- 4. Рощин, В.М. Технология материалов микро-, опто- и наноэлектроники. Часть 2.: учебное пособие для вузов по направлению подготовки 210100 «Электроника и микро-электроника» / В.М. Рощин. Москва: Бином, 2010, 180 с. ISBN 978-5-94774-913-7.
- 5. Химическая диагностика материалов/ В.Г. Корсаков, М.М.Сычев, С.В. Мякин [и др.]; Министерство образования и науки Российской Федерации, Петербург. гос. унт путей сообщения. Санкт-Петербург: ПГУПС, 2010. 225 с. ISBN 978-5-7641-0254-2.
- 6. Русинов, Л.А. Методы и средства измерений параметров качества нанотехнологических процессов и характеристик химических наноматериалов: Учебное пособие / Л. А. Русинов, Л. В. Новиков; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов хим. промышленности. Санкт-Петербург: [б. и.], 2012. 102 с.

7. Рыжков, И.Б. Основы научных исследований и изобретательства::учебное пособие для вузов по направлениям подготовки (специальностям) 280400 - "Природоустройство", 280300 - "Водные ресурсы и водопользование" / И. Б. Рыжков. - 2-е изд., стер. — Санкт-Петербург; Москва; Краснодар: Лань, 2013. - 222 с. - ISBN 978-5-8114-1264-8.

б) электронные издания:

- 1. Бахметьев, В.В. Исследование микроструктуры сплавов с использованием компьютерной программы "ВидеоТесТ": Методические указания / В. В. Бахметьев, М. М. Сычев; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2011. 17 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). Режим доступа: для зарегистрир. пользователей.
- 2. Богданов, С.П. Рентгеноструктурный анализ углеродистых материалов: Методические указания / С. П. Богданов; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра технологии электротермических и плазмохимических производствв. Электрон. текстовые дан. Санкт-Петербург: [б. и.], 2013. 26 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). Режим доступа: для зарегистрир. пользователей.
- 3. Исследование наноструктур с применением сканирующей зондовой микроскопии: учебное пособие / К. Л. Васильева, О. М. Ищенко, Е. А. Соснов, А. А. Малыгин; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической нанотехнологии и материалов электронной техники. Санкт-Петербург: [б. и.], 2010. 63 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). Режим доступа: для зарегистрир. пользователей.
- 4. Макарова, Л.Ф. Основы стандартизации, метрологии, сертификации: учебное пособие для заочной формы обучения направления подготовки «Информатика и вычислительная техника» / Л.Ф. Макарова; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический (технический университет), Кафедра системем автоматизированного институт проектирования и управления. – Санкт-Петербург: [б. и.], 2010. – 155 с. // СПбГТИ. Электронная библиотека. - URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). - Режим доступа: для зарегистрир. пользователей.
- 5. Определение цветовых координат люминофоров и их смесей: метод. указания / Н. В. Захарова [и др.]; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения, Кафедра систем автоматизированного проектирования и управления Санкт-Петербург: [б. и.], 2011. 23 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). Режим доступа: для зарегистрир. пользователей.
- 6. Соснов, Е.А. Основы научных исследований: в 2-х ч.: текст лекций / Е. А. Соснов; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической нанотехнологии и материалов электронной техники. Санкт-Петербург: [б. и.], 2014. Ч. 1. 2014. 127 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). Режим доступа: для зарегистрир. пользователей.
- 7. Соснов, Е.А. Основы научных исследований: в 2-х ч.: текст лекций / Е. А. Соснов; Министерство образования и науки Российской Федерации, Санкт-

Петербургский государственный технологический институт (технический университет), Кафедра химической нанотехнологии и материалов электронной техники. — Санкт-Петербург: [б. и.], 2014. Ч. 2. - 2014. - 87 с. // СПбГТИ. Электронная библиотека. - URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). - Режим доступа: для зарегистрир. пользователей.

8. Старцев, Ю.К. Теория и практика измерения температуры / Ю. К. Старцев; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения, Кафедра теоретических основ материаловедения. — Санкт-Петербург: [б. и.], 2014. - 146 с. // СПбГТИ. Электронная библиотека. - URL: https://technolog.bibliotech.ru (дата обращения: 15.06.2021). - Режим доступа: для зарегистрир. пользователей.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

Интернет-ресурсы: проводить поиск в различных системах, таких как www.yandex.ru, www.google.ru, www.rambler.ru, www.yahoo.ru и использовать материалы сайтов, рекомендованных преподавателем на лекционных занятиях.

С компьютеров института открыт доступ к:

www.elibrary.ru - eLIBRARY - научная электронная библиотека периодических изданий;

http://e.lanbook.com - Электронно-библиотечная система издательства «Лань», коллекции «Химия» (книги издательств «Лань», «Бином», «НОТ»), «Нанотехнологии» (книги издательства «Бином. Лаборатория знаний»);

www.consultant.ru - Консультант Π люс - база законодательных документов по $P\Phi$ и Санкт-Петербургу;

www.scopus.com - База данных рефератов и цитирования Scopus издательства Elsevier;

http://webofknowledge.com - Универсальная реферативная база данных научных публикаций Web of Science компании Thomson Reuters.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Цифровые методы контроля структуры и свойств продукции химических производств» проводятся в соответствии с требованиями следующих СТП и СТО:

СТП СПбГТИ 040-02 КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014 КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению;

СТО СПбГТИ 020-2011 КС УКДВ. Виды учебных занятий. Лабораторные работы. Общие требования к организации и проведению;

СТП СПбГТИ 048-2009 КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы; серьезное отношение к изучению материала; постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций;

взаимодействие с обучающимися посредством электронной информационно-образовательной среды.

10.2. Программное обеспечение.

Для проведения занятий имеются персональные компьютеры с программным обеспечением:

- Windows;
- OpenOffice;
- Mathcad.

10.3. Базы данных и информационные справочные системы.

- 1. http://prometeus.nse.ru база ГПНТБ СО РАН.
- 2. http://borovic.ru база патентов России.
- 3. http://1.fips.ru/wps/portal/Register Федеральный институт промышленной собственности.
 - 4. http://google/com/patent база патентов США.
 - 5. http://freepatentsonline.com база патентов США.
 - 6. http://patentmatie.com/welcome база патентов США.
 - 7. http://patika.ru/Epasenet_patentnie_poisk.html европейская база патентов.
 - 8. http://gost-load.ru- база ГОСТов.
 - 9. http://worlddofaut.ru/index.php база ΓОСТов.
 - 10. http://elibrary.ru Российская поисковая система научных публикаций.
 - 11. http://springer.com англоязычная поисковая система научных публикаций.
 - 12. http://dissforall.com база диссертаций.
 - 13. http://diss.rsl.ru база диссертаций.
 - 14. http://riodb.ibase.aist.go.jp/riohomee.html база спектров химических соединений.
 - 15. http://markmet.ru марочник сталей.

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Для проведения занятий в интерактивной форме, чтения лекций в виде презентаций, демонстрации видео материалов используется мультимедийная техника.

Для проведения практических занятий используют компьютерный класс с персональными компьютерами.

Для проведения лабораторных занятий используется следующее оборудование:

- 1. Комплекс электрических измерений наноструктур (RLC метр E7-20, вольтметр универсальный электрометрический B7Э-42, комплекс измерительный K505, источник калиброванных напряжений, электрометр Keithley, генератор сигналов низкочастотный Г3-123, мегомметр ПС-1, источник питания постоянного тока Б5-44);
 - 2. Комплекс спектральных измерений (Атомно-абсорбционный спектрометр МГА-

- 915, сканирующий электронный микроскоп Tescan Vega 3 SBH, дифрактометр рентгеновский Rigaku Smartlab, спектрофотометры СФ-46, СФ-56, спектроколориметр ТКА-ВД, яркомер ФПЧ-УХЛ4, лазерный микроанализатор LMA -10, ИК-микроскоп со спектрофотометром Nicolet FT-IR, спектрофлуориметр AvaSpec-3648, исследовательский радиометр IL1700, микроскоп люминесцентный ЛЮМАМ);
- 3. Комплекс оптических измерений (15 металлографических микроскопов МИМ-4, МИМ-6, МИМ-8, универсальный измерительный микроскоп УИМ-21, рефрактометр ИРФ-23, 2 минералогических микроскопа МИН-8, 2 микротвердомера ПМТ-3,)
 - 4 Установка молекулярного наслаивания,
- 5.Установка измерения полярной и неполярной составляющих свободной поверхностной энергии;
 - 6. Анализатор размера частиц;
 - 7. Дилатометр кварцевый ДКВ-4,
 - 8. Ротационный вискозиметр «Rheotest»,
 - 9. Пресса CarlZeisse Jena усилием 10 и 30 т;
 - 10. Две ультразвуковые ванна УЗУ- 0.25;
- 11. Весы электронные аналитические ALC-210d4, электронные технические ET-300;
 - 12. Весы механические ВНЦ, ВКЛ-500M, ВЛР-200, WA-21;
 - 13. Три бокса 7БП1-ОС;
 - 14. Вакуумные сушильные шкафы SPT-200,
- 15. Электропечи лабораторные SNOL 6,7/1300, РЭМ 24/87, МП-2УМ и др. с рабочей температурой до 1600^{0} C;
 - 16. Термометры, термопары;
 - 17. Бидистилляторы стеклянные БС, дистилляторы ДЭ-4,
 - 18. Магнитные мешалки ММ-5;
- 19. Стеклянная посуда: колбы, мерные цилиндры, водоструйный насос, холодильник, чашки Петри, колба Бунзена, воронка Бюхнера.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Цифровые методы контроля структуры и свойств продукции химических производств»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание	Этап формирования
ПК-1	Способен проводить патентные исследования,	промежуточный
	обрабатывать и анализировать научно-техническую	
	информацию и результаты исследований и	
	разработок в области автоматизированных систем	
	проектирования и управления технологическими	
	процессами.	

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование	Показатели сформированности	Критерий оценивания	УРОВНИ СФОРМИРОВАННОСТИ (описание выраженности дескрипторов)		
индикатора достижения компетенции	(дескрипторы)	оценивания	«удовлетворительно» (пороговый)	«хорошо» (средний)	«отлично» (высокий)
ПК-1.2. Обработка результатов экспериментов на химико-технологических объектах проектирования и управления с использованием современных методов анализа научных данных.	Знать программные продукты для теоретических исследований и моделирования материалов и процессов (3H-1).	Ответы на вопросы №10-12 к зачету.	Имеет представление о теоретических методах исследования.	Может предложить свои варианты теоретического исследования или моделирования предложенного материала или процесса.	Знает программные продукты для теоретических исследований и моделирования материалов и процессов.
	Знать современные методы химического и физико-химического анализа (ЗН-2).	Ответы на вопросы №4-9 к зачету.	Имеет представление о современных методах физико-химического анализа свойств материалов.	Способен привести примеры методов анализа свойств конкретного материала.	Знает современные методы исследования наноматериалов и может обоснованно выбрать метод для конкретного объекта исследования.
	Уметь выбрать программный продукт для теоретического и экспериментального исследования (У-1).	Ответы на вопросы №10- 12 и задание №3-5 к зачету.	Имеет представление о программных продуктах для теоретических и экспериментальных исследованиях.	Способен выбрать программный продукт для своего исследования из списка предложенных продуктов.	Умеет выбирать программные продукты для своего теоретического и экспериментального исследования.
	Уметь выбрать метод математической обработки результатов теоретического и экспериментального исследования (У-2).	Ответы на вопросы №13- 19 и задания №1-2 к зачету.	Имеет представление о математической обработке результатов исследований.	Способен выбрать метод обработки результатов исследования.	Умеет грамотно обрабатывать результаты теоретического и экспериментального исследования с помощью программных продуктов.
	Владеть математическим аппаратом для описания и анализа результатов исследования (H-1).	Ответы на вопросы №1-3 и задания №1-2 к зачету.	Имеет представление о погрешности средств и результатов измерения.	Способен оценить точность средств измерения и результатов исследования.	Владеет методами математической статистики.

3. Типовые контрольные задания для проведения промежуточной аттестации

а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-1:

Теоретический вопрос:

- 1. Виды погрешности экспериментальных результатов.
- 2. Погрешность метода и средства измерения.
- 3. Методы статистической обработки экспериментальных данных.
- 4. Физико-химических явления, используемые для исследования материалов и процессов.
 - 5. Методы рентгенофазового анализа (РСА).
 - 6. Методы рентгеноструктурного анализа (РФА).
 - 7. Дифференциальный термический анализ (ДТА).
 - 8. Методы сканирующей электронной микроскопии (СЭМ).
 - 9. ИК-спектроскопия.
 - 10. Теоретические исследования.
 - 11. Программные продукты для моделирования материалов и процессов.
 - 12. Цели и задачи прикладных и фундаментальных исследований.
 - 13. Методы и ресурсы для получения научной информации.
 - 14. Этапы проведения НИР.
 - 15. Методы планирования эксперимента.
 - 16. Ресурсы для проведения НИР и их подготовка.
 - 18. Методы компьютерного моделирования свойств веществ и материалов.
 - 19. Метод измерения, методика анализа и средства измерения.

Практическое задание:

- 1. Постройте графическую зависимость по заданным результатам измерения и объясните ее.
 - 2. Рассчитать среднеквадратичное отклонение для массива данных.
- 3. Выбрать программные продукты для теоретических исследований по предложенной теме.
- 4. Предложить набор задач, которые необходимо решить при заданной цели исследования.
 - 5. Предложить методы и приборы для исследования заданного свойств объекта.

4. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 016-2015 КС УКДВ. Порядок организации и проведения зачетов и экзаменов.

По дисциплине промежуточная аттестация проводится в форме зачета.

Шкала оценивания на зачете – «зачет», «незачет». При этом «зачет» соотносится с пороговым уровнем сформированности компетенции.