Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 30.01.2024 14:25:08 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
«04» сентября 2023 г.

Рабочая программа дисциплины МАТЕРИАЛОВЕДЕНИЕ

Направление подготовки

15.03.04 Автоматизация технологических процессов и производств

Квалификация

Бакалавр

Форма обучения

Заочная

Факультет механический

Кафедра теоретических основ материаловедения

Санкт-Петербург 2023

ЛИСТ СОГЛАСОВАНИЯ

Должность разработчика	Подпись	Ученое звание, фамилия, инициалы
Доцент		Лукашова Т.В.

Рабочая программа дисциплины «Материаловедение» обсуждена на заседании кафедры теоретических основ материаловедения протокол от « 31 » 08 2023 №1 Заведующий кафедрой М.М.Сычев

Одобрено учебно-методической комиссией механического факультета протокол от « 31 » 08 2023 № 1

Председатель А.Н.Луцко

СОГЛАСОВАНО

Руководитель направления подготовки	О.А.Ремизова
«Автоматизация технологических процессов и производств»	
Директор библиотеки	Т.Н. Старостенко
Начальник методического отдела	М.З. Труханович
учебно-методического управления	
Начальник	С.Н.Денисенко
учебно-методического управления	

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируе-
мыми результатами освоения образовательной программы
2. Место дисциплины в структуре образовательной программы
3. Объем дисциплины
4. Содержание дисциплины
4.1. Разделы дисциплины и виды занятий
4.2. Формирование индикаторов достижения компетенций разделами дисциплины
4.3. Занятия лекционного типа
4.4. Занятия семинарского типа
4.4.1. Лабораторные занятия
4.5. Самостоятельная работа обучающихся11
5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся
по дисциплине
6. Фонд оценочных средств для проведения промежуточной аттестации11
7. Перечень учебных изданий, необходимых для освоения дисциплины
8. Перечень электронных образовательных ресурсов, необходимых для освоения дисципли-
ны
9. Методические указания для обучающихся по освоению дисциплины
10. Перечень информационных технологий, используемых при осуществлении образова-
тельного процесса по дисциплине
10.1. Информационные технологии
10.2. Программное обеспечение
10.3. Базы данных и информационные справочные системы
11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образо-
вательной программы
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможно-
стями здоровья
Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации18

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

Для освоения образовательной программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование компетенции	Код и наименование инди- катора достижения компетенции	Планируемые результаты обучения (дескрипторы)
ОПК-7 Способен применять современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении.	ОПК-7.2. Использует знания по применению современных и перспективных материалов при выполнении НИОКР, выборе и проектировании технических средств автоматизации, а также при выполнении монтажных работ.	Знать: общую классификацию современных и перспективных материалов, области их применения (ЗН-1). Уметь: оценивать применимость и целесообразность использования современных и перспективных материалов для конкретных назначений (У-1). Владеть: навыками применения материалов с требуемым комплексом свойств для решения задач в своей профессиональной деятельности (Н-1).
ОПК-12 Способен оформлять, представлять и докладывать результаты выполненной работы.	ОПК-12.3. Знает и использует методы измерения и стандартных испытаний важнейших свойств и целевых характеристик современных материалов, а также обработки полученных результатов.	Знать: основные методы определения свойств и эксплуатационных характеристик материалов (ЗН-2). Уметь: проводить эксперименты, обрабатывать их результаты (У-2). Владеть: методами оценки погрешности (Н-2).

2. Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательной части Блока 1 «Дисциплины (модули)» образовательной программы бакалавриата (Б1.О.26) и изучается на 2 и 3 курсе.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин «Физика», «Химия», «Математика», «Основы экологии», «Прикладная механика».

Полученные в процессе изучения дисциплины «Материаловедение» знания, умения и навыки могут быть использованы при прохождении преддипломной практики, а также при выполнении выпускной квалификационной работы.

3. Объем дисциплины.

Форма промежуточной аттестации	Экзамен (9)
Форма текущего контроля	3 к.р.
Самостоятельная работа	123
другие виды контактной работы	-
KCP	-
курсовое проектирование (КР или КП)	
лабораторные работы	8
семинары, практические занятия	-
занятия семинарского типа, в т.ч.	8
занятия лекционного типа	4
Контактная работа с преподавателем:	12
Общая трудоемкость дисциплины (зачетных единиц/ академических часов)	4/144
Вид учебной работы	Всего, ЗЕ/академ. часов

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

		эго типа,	Занятия семинарского типа, академ. часы		работа,	петенции
№ п/п	Наименование раздела дисциплины	Занятия лекционного типа, акад. часы	Семинары и/или практические за- нятия	Лабораторные ра- боты	Самостоятельная работа, акад. часы	Формируемые компетенции
1	Введение. Строение твердых веществ. Механические свойства. Дефекты кристаллической решётки.	0,5		1	16	ОПК-7 ОПК- 12
2	Двухкомпонентные диаграммы состояния. Диаграмма железо-углерод. Железоуглеродистые сплавы: стали, чугуны.	1		2	18	ОПК-7
3	Термообработка железо-углеродных сплавов. Химико-термическая, термомеханическая обработка.	0,5		3	22	ОПК-7 ОПК- 12
4	Легированные конструкционные и инструментальные стали, стали с особыми свойствами. Инструментальные материалы.	0,5		1	17	ОПК-7
5	Цветные сплавы: сплавы на основе меди, алюминия, титана, никеля, магния.	0,5		1	16	ОПК-7
6	Электротехнические, композиционные, магнитные материалы. Полимеры, пластмассы, резины. Аддитивные технологии. Наноматериалы.	0,5			18	ОПК-7
7	Коррозия металлов.	0,5			16	ОПК- 12
	ИТОГО:	4		8	123	

4.2 Формирование индикаторов достижения компетенций разделами дисциплины

№ п/п	Код индикаторов до- стижения компетенции	Наименование раздела дисциплины		
1.	ОПК-7.2	Введение. Строение твердых веществ. Механические		
		свойства. Дефекты кристаллической решётки.		
		Двухкомпонентные диаграммы состояния. Диаграмма		
		железо-углерод. Железоуглеродистые сплавы: стали, чу-		
		гуны.		
		Термообработка железо-углеродных сплавов. Химико-		
		термическая, термомеханическая обработка.		
		Легированные конструкционные и инструментальные		
		стали, стали с особыми свойствами. Инструментальные		

№ п/п	Код индикаторов до- стижения компетенции	Наименование раздела дисциплины
		материалы.
		Цветные сплавы: сплавы на основе меди, алюминия.
		Электротехнические, композиционные, магнитные ма-
		териалы. Полимеры, пластмассы, резины. Аддитивные
		технологии. Наноматериалы.
2.	ОПК-12.3	Введение. Строение твердых веществ, влияние типа
		химических связей на механические свойства твёрдых
		веществ. Дефекты кристаллической решётки.
		Термообработка железо-углеродных сплавов. Химико-
		термическая, термомеханическая обработка.
		Коррозия металлов.

4.3. Занятия лекционного типа.

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
1	Введение. Строение твердых веществ, влияние типа химических связей на механические свойства твёрдых веществ прочность, пластичность, твёрдость, упругость. Дефекты кристаллической решётки.	0,5	
2	Двухкомпонентные диаграммы состояния. Диаграмма железо-углерод. Фазовые превращения и критические точки. Железо-углеродные сплавы: углеродистые стали (конструкционные, инструментальные), чугуны	1	
3	Превращения в сталях при нагревании и охлаждении. Термообработка железо-углеродных сплавов. Закалка, отпуск, отжиг, нормализация, старение. Химико-термическая, термомеханическая обработка.	0,5	
4	Легированные стали (конструкционные, инструментальные), стали с особыми свойствами. Инструментальные материалы	0,5	
5	Цветные сплавы. Алюминий и сплавы на его основе — маркировка, свойства, применение. Медь, бронзы, латуни — маркировка, свойства, применение.	0,5	
6	Электротехнические, композиционные, магнитные материалы. Полимеры, пластмассы, резины. Аддитивные технологии. Наноматериалы.	0,5	

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	Коррозия металлов. Виды коррозионных разрушений. Показатели коррозионной стойкости. Химическая и электрохимическая коррозия. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.		

4.4. Занятия семинарского типа 4.4.1. Лабораторные работы

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Примечание
1	Определение твёрдости конструкционных материалов методом Бринелля и инструментальных материалов методом Роквелла. При выполнении лабораторной работы (метод Бринелля) студенты определяют твёрдость четырёх образцов сплавов (сталь, медный сплав, алюминиевый сплав, титановый сплав), проводят статистическую обработку полученных результатов и сравнивают твёрдость и прочность измеренных образцов. При определении твёрдости по методу Роквелла студенты измеряют твёрдость эталонных образцов и нескольких образцов режущих инструментов, проводят статистическую обработку полученных результатов (определяют погрешность измерений) и сравнивают твёрдость и прочность различных инструментальных материалов.	1	
2	2-х компонентные диаграммы состояния. Закон Гиббса. Правило фаз. Правило отрезков. В соответствии с индивидуальным заданием студенты описывают 2-х компонентную равновесную диаграмм состояния (тип диаграммы, фазы и структуры, линии и точки на диаграмме), строят кривую охлаждения, определяют количество степеней свободы в заданных точках, по правилу отрезков рассчитывают количественное соотношение фаз.	2	
2	Диаграмма состояния железо — углерод. Фазы, структуры, линии, критические точки. В соответствии с индивидуальным заданием студенты строят кривую охлаждения, описываю фазовый состав сплава и его свойства, по правилу отрезков рассчитывают количественное соотношение фаз и структур.	1	

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Примечание
2	Изучение микроструктуры и свойств медленноохлаждённой углеродистой стали и чугунов В данной работе студенты изучают коллекцию микрошлифов углеродистых сталей с различным содержанием углерода. В соответствии с индивидуальным заданием описывают превращения в данной стали при медленном охлаждении, а также её механические свойства и область применения. Студенты также изучают коллекцию микрошлифов белых и серых чугунов. Исходя из структуры серых чугунов делают заключение об их свойствах.	1	
3	Изучение влияния скорости охлаждения при закалке на свойства доэвтектоидной и заэвтектоидной углеродистой стали. При выполнении работы студенты проводят закалку образцов конструкционной и инструментальной углеродистой стали в четырёх охладителях — воздух, вода (Т = 20°С), минеральное масло и 10%-ный раствор NaCl (Т = 20 °С). Затем они строят график зависимости твёрдости стали, определённой методом Роквелла, от относительной интенсивности охлаждения и описывают фазовые превращения на всех стадиях термообработки.	3	
4	Легированные стали. Стали с особыми свойствами В соответствии с индивидуальным заданием студенты для двух марок сталей отвечают на следующие вопросы: 1. Расшифровать состав сплава. 2. Описать структуру сплава. 3. Какой термообработке подвергается сплав (если подвергается) и с какой целью. Структура сплава после термообработки. 4. Какими свойствами (механическими, антикоррозионными, технологическими и т.д.) обладает этот сплав. 5. Применение сплава.	1	
5	Сплавы на основе меди. Сплавы на основе алюминия. В соответствии с индивидуальным заданием студенты для двух сплавов на основе меди и двух сплавов на основе алюминия отвечают на следующие вопросы: 1. Расшифровать состав сплава. 2. Описать структуру сплава. 3. Какой термообработке подвергается сплав (если подвергается) и с какой целью. Структура сплава после термообработки. 4. Какими свойствами (механическими, антикоррозионными, технологическими и т.д.) обладает этот сплав. 5. Применение сплава.	1	

4.5. Самостоятельная работа обучающихся

№ раздела дис- циплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма кон- троля
1	Механические свойства материалов: твердость, предел прочности, предел текучести, относительное удлинение (сужение), вязкость.	16	Контрольная работа №2. Устный опрос
2	Двухкомпонентные диаграммы состояния. Диаграмма Fe-C. Автоматные стали. Литейные стали.	18	Контрольная работа №1. Устный опрос
3	Термообработка углеродистых и легированных сталей. Химико-термическая обработка. Цементация. Азотирование. Нитроцементация. Цианирование. Диффузионная металлизация.	22	Контрольная работа №2. Устный опрос
4	Углеродистые и легированные стали. Износостойкие стали. Твердые сплавы. Абразивные материалы.	17	Контрольная работа №2. Устный опрос
5	Сплавы на основе алюминия, меди, никеля, титана, магния.	16	Контрольная работа №3. Устный опрос
6	Электротехнические, композиционные, магнитные материалы. Полимеры, пластмассы, резины. Аддитивные технологии. Наноматериалы.	18	Устный опрос
7	Виды коррозии. Атмосферная коррозия. Подземная коррозия. Межкристаллитная коррозия. Методы защиты от коррозии.	16	Устный опрос

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме защиты курсовой работы и сдачи экзамена

К экзамену допускаются студенты, выполнившие все формы текущего контроля. Экзамен предусматривают выборочную проверку освоения предусмотренных элементов компетенций и комплектуются тремя вопросами из различных разделов дисциплины.

Время подготовки студента к устному ответу - до 30 мин.

Пример варианта вопросов на экзамене:

Задание № 1

- 1. Превращения в углеродистых сталях при охлаждении. Перлитное превращение. Определение перлита, сорбита, троостита
- 2. Химико-термическая обработка. Азотирование.
- 3. Композиционные материалы. Классификация. Методы изготовления изделий из КМ.

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – оценка «удовлетворительно».

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Материаловедение: учебное пособие / М.М.Сычев, С.В.Мякин, Т.В.Лукашова, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2017. 66 с.
- 2. Лукашова, Т.В. Углеродистые стали: учебное пособие / Т.В.Лукашова, С.В.Мякин, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2018. 23 с.
- 3. Легированные стали: учебное пособие / Т.В. Лукашова, С.И. Гринева, В.Н. Коробко, С.В. Мякин // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2013. 38 с.
- 4. Алюминий, магний и легкие сплавы на их основе: учебное пособие / С.В.Мякин, Т.В. Лукашова, Н.А. Христюк, М.М. Сычев // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2019. 32 с.
- 5. Лукашова, Т.В. Медь и сплавы на ее основы: учебное пособие / Т.В. Лукашова, С.В. Мякин, К.А. Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2020. 34 с.
- 6._Арзамасов, В.Б. Материаловедение: учебник для студ. учреждений высш. проф. Образования / В.Б. Арзамасов, А.А. Черепахин, Москва: Издательский центр «Академия», 2013.-173 с. ISBN 978-5-7695-8835-8.
- 7. Готтштайн, Г. Физико-химические основы материаловедения: / Г. Готтштайн; пер. с англ. К. Н. Золотовой, Д. О. Чаркина, под ред. В. П. Зломанова. Москва: БИНОМ. Лаборатория знаний, 2009. 400 с. ISBN 978-5-94774-769-0.
- 8. Елисеев, А. А. Функциональные наноматериалы: учебное пособие для вузов по спец. 020101 (011000) «Химия» / А. А. Елисеев, А. В. Лукашин; под ред. Ю. Д. Третьякова. Москва: Физматлит, 2010. 452 с. ISBN 978-5-9221-1120-1.
- 9. Каллистер, У. Д. Материаловедение: от технологии к применению (металлы, керамика, полимеры) / У. Д. Каллистер, Д. Дж. Ретвич; пер. с англ. под ред. А. Я. Малкина. Санкт-Петербург: Изд-во НОТ, 2011. 895 с. ISBN 978-5-91703-022-7.
- 10. Лахтин, Ю.М. Материаловедение: учебник для вузов. / Ю.М. Лахтин, В.П. Леонтьева. Москва: Альянс, 2009. 528 с. ISBN 978-5-903034-54-3.
- 11. Материаловедение и технологии современных и перспективных материалов: лабораторный практикум / М.М. Сычев, В.Н. Коробко, В.В. Бахметьев, С.В. Мякин [и др.]; Министерство образования и науки Российской Федерации, Санкт-Петербургский

государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. – Санкт-Петербург: [б. и.], 2013. – 161 с.

- 12. Полимерные композиционные материалы: структура, свойства, технология: учебное пособие для вузов по спец. "Технология переработки пластических масс и эластомеров"/ М. Л. Кербер [и др.]. Санкт-Петербург: Профессия, 2009. 557 с. ISBN 978-5-93913-130-8.
- 13. Солнцев, Ю.П. Материаловедение: учебник для вузов. / Ю.П. Солнцев, Е.И. Пряхин. Санкт-Петербург: Химиздат, 2007 784 с. ISBN 5-93808-131-9.
- 14. Химическая диагностика материалов / В. Г. Корсаков [и др.]. Петербург. гос. ун-т путей сообщения. Санкт-Петербург: Петербург. гос. ун-т путей сообщения, 2010. 224 с. ISBN 978-5-7641-0254-2.

б) электронные издания:

- 1. Материаловедение: учебное пособие / М.М.Сычев, С.В.Мякин, Т.В.Лукашова, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2017. 66 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2021). Режим доступа: для зарегистрир. пользователей.
- 2. Лукашова, Т.В. Углеродистые стали: учебное пособие / Т.В.Лукашова, С.В.Мякин, К.А.Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2018. 23 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2021). Режим доступа: для зарегистрир. пользователей.
- 3. Легированные стали: учебное пособие / Т.В. Лукашова, С.И. Гринева, В.Н. Коробко, С.В. Мякин // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2013. 38 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2021). Режим доступа: для зарегистрир. пользователей.
- 4. Алюминий, магний и легкие сплавы на их основе: учебное пособие / С.В.Мякин, Т.В. Лукашова, Н.А. Христюк, М.М. Сычев // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2019. 32 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 25.12.2021). Режим доступа: для зарегистрир. пользователей.
- 5. Лукашова, Т.В. Медь и сплавы на ее основы: учебное пособие / Т.В. Лукашова, С.В. Мякин, К.А. Огурцов // Министерство образования и науки Российской федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2020. 34 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 26.12.2021). Режим доступа: для зарегистрир. пользователей.
- 6. Закалка углеродистых сталей: Методические указания к лабораторной работе: / В. Н. Коробко [и др.]; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2010. 22 с.

// СПбГТИ. Электронная библиотека. - URL: https://technolog.bibliotech.ru (дата обращения: 18.12.2021). - Режим доступа: для зарегистрир. пользователей.

- 7. Коробко, В.Н. Основы технологии конструкционных материалов: Учебное пособие / В. Н. Коробко, М. М. Сычев, А. Б. Романов; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2012. 97 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 12.12.2021). Режим доступа: для зарегистрир. пользователей.
- 8. Коробко, В. Н. Иллюстративный материал для лекций по курсу "Материаловедение": учебное пособие / В.Н. Коробко, М.М. Сычев, Г.Е. Горянина; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2011. 61с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 20.12.2021). Режим доступа: для зарегистрир. пользователей.
- 9. Материаловедение и технологии современных и перспективных материалов: лабораторный практикум / М.М.Сычев, В.Н. Коробко, В.В. Бахметьев [и др.]; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: [б. и.], 2013. 161 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.12.2021). Режим доступа: для зарегистрир. пользователей.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

Интернет-ресурсы: проводить поиск в различных системах, таких как www.yandex.ru, www.google.ru, www.rambler.ru, www.yahoo.ru и использовать материалы сайтов, рекомендованных преподавателем на лекционных занятиях.

С компьютеров института открыт доступ к:

www.elibrary.ru - eLIBRARY - научная электронная библиотека периодических изданий;

<u>http://e.lanbook.com</u> - Электронно-библиотечная система издательства «Лань», коллекции «Химия» (книги издательств «Лань», «Бином», «НОТ»), «Нанотехнологии» (книги издательства «Бином. Лаборатория знаний»);

 $\underline{www.consultant.ru}$ - Консультант Плюс - база законодательных документов по РФ и Санкт-Петербургу;

<u>www.scopus.com</u> - База данных рефератов и цитирования Scopus издательства Elsevier;

<u>http://webofknowledge.com</u> - Универсальная реферативная база данных научных публикаций Web of Science компании Thomson Reuters;

<u>http://iopscience.iop.org/journals?type=archive, http://iopscience.iop.org/page/subjects</u> - Издательство IOP (Великобритания);

www.oxfordjournals.org - Архив научных журналов издательства Oxford University Press;

<u>http://www.sciencemag.org/</u> - Полнотекстовый доступ к журналу Science (The American Association for the Advancement of Science (AAAS));

http://www.nature.com - Доступ к журналу Nature (Nature Publishing Group);

<u>http://pubs.acs.org</u> - Доступ к коллекции журналов Core + издательства American Chemical Society;

<u>http://journals.cambridge.org</u> - Полнотекстовый доступ к коллекции журналов Cambridge University Press.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Материаловедение» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 020-2011. КС УКДВ. Виды учебных занятий. Лабораторные занятия. Общие требования к организации и проведению.

СТО СПбГТИ(ТУ) 044-2012. КС УКДВ. Виды учебных занятий. Курсовой проект. Курсовая работа. Общие требования.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение.

Для проведения занятий имеются персональные компьютеры с программным обеспечением:

- Windows,
- OpenOffice.

10.3. Базы данных и информационные справочные системы.

- 1. http://prometeus.nse.ru база ГПНТБ СО РАН.
- 2. http://borovic.ru база патентов России.
- 3. http://1.fips.ru/wps/portal/Register Федеральный институт промышленной собственности
 - 4. http://google/com/patent- база патентов США.
 - 5. http://freepatentsonline.com- база патентов США.
 - 6. http://patentmatie.com/welcome база патентов США.
 - 7. http://patika.ru/Epasenet patentnie poisk.html европейская база патентов.
 - 8. http://gost-load.ru- база ГОСТов.
 - 9. http://worlddofaut.ru/index.php база ΓОСТов.
 - 10. http://elibrary.ru Российская поисковая система научных публикаций.

- 11. http://springer.com англоязычная поисковая система научных публикаций.
- 12. http://dissforall.com база диссертаций.
- 13. http://diss.rsl.ru база диссертаций.
- 14. http://webbook.nist.gov/chemistry NIST Standard Reference Database.
- 15. http://riodb.ibase.aist.go.jp/riohomee.html база спектров химических соединений.
- 16. http://markmet.ru марочник сталей.

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Для проведения занятий в интерактивной форме, чтения лекций в виде презентаций, демонстрации видео материалов используется мультимедийная техника.

Для проведения практических занятий используют компьютерный класс с персональными компьютерами.

Для проведения мастер классов и демонстрации практической исследовательской работы используется следующее оборудование:

- 1. Комплекс электрических измерений наноструктур (RLC метр E7-20, вольтметр универсальный электрометрический B7Э-42, комплекс измерительный K505, источник калиброванных напряжений, электрометр Keithley, генератор сигналов низкочастотный ГЗ-123, мегомметр ПС-1, источник питания постоянного тока Б5-44);
- 2. Комплекс спектральных измерений (Атомно-абсорбционный спектрометр МГА-915, сканирующий электронный микроскоп Tescan Vega 3 SBH, дифрактометр рентгеновский Rigaku Smartlab, спектрофотометры СФ-46, СФ-56, спектроколориметр ТКА-ВД, яркомер ФПЧ-УХЛ4, лазерный микроанализатор LMA -10, ИК-микроскоп со спектрофотометром Nicolet FT-IR, спектрофлуориметр AvaSpec-3648, исследовательский радиометр IL1700, микроскоп люминесцентный ЛЮМАМ);
- 3. Комплекс оптических измерений (15 металлографических микроскопов МИМ-4, МИМ-6, МИМ-8, универсальный измерительный микроскоп УИМ-21, рефрактометр ИРФ-23, 2 минералогических микроскопа МИН-8, 2 микротвердомера ПМТ-3,)
 - 4 Установка молекулярного наслаивания,
- 5. Установка измерения полярной и неполярной составляющих свободной поверхностной энергии;
 - 6. Анализатор размера частиц;
 - 7. Дилатометр кварцевый ДКВ-4,
 - 8. Ротационный вискозиметр «Rheotest»,
 - 9. Пресса CarlZeisse Jena усилием 10 и 30 т.;
 - 10. Две ультразвуковые ванна УЗУ- 0.25;
- 11. Весы электронные аналитические ALC-210d4, электронные технические ET-300:
 - 12. Весы механические ВНЦ, ВКЛ-500М, ВЛР-200, WA-21;
 - 13. Три бокса 7БП1-ОС;
 - 14. Вакуумные сушильные шкафы SPT-200,
- 15. Электропечи лабораторные SNOL 6,7/1300, РЭМ 24/87, МП-2УМ и др. с рабочей температурой до 1600° C;
 - 16. Термометры, термопары;
 - 17. Бидистилляторы стеклянные БС, дистилляторы ДЭ-4,
 - 18. Магнитные мешалки ММ-5;
- 19.Стеклянная посуда: колбы, мерные цилиндры, водоструйный насос, холодильник, чашки Петри, колба Бунзена, воронка Бюхнера.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Материаловедение»

1. Перечень компетенций и этапов их формирования.

Индекс ком- петенции	Содержание	Этап формирова- ния
ОПК-7	ОПК-7. Способен применять современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении.	промежуточный
ОПК-12	ОПК-12. Способен оформлять, представлять и докладывать результаты выполненной работы.	промежуточный

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование индикатора	Показатели сформированности (дескрипторы)	Критерий оценивания	УРОВНИ СФОРМИРОВАННОСТИ (описание выраженности дескрипторов)		
достижения ком-	V. I I /	,	«удовлетворительно» (пороговый)	«хорошо» (средний)	«отлично» (высокий)
ОПК-7.2. Использует знания по применению современных и перспективных материалов при выполнении НИОКР, выборе и проектировании технических средств автоматизации, а также при выполнении монтажных работ.	Знает общую классификацию современных и перспективных материалов, области их применения (ЗН-1). Умеет оценивать применимость и целесообразность использования современных и перспективных материалов для конкретных назначений (У-1). Владеет навыками применения материалов для решения задач в своей профессиональной деятельности (Н-1).	Ответы на вопросы к экзамену № 1-50. Курсовая работа.	Имеет общее представление о структуре и свойствах материалов, областях их применения.	Воспроизводит термины, основные понятия, знает общую классификацию материалов. Выявляет взаимосвязымежду структурой и свойствами материалов. Способен определить области их применения. Способен предложить перспективный материал для конкретного назначения.	Обладает широким спектром знаний в области современных материалов, методов определения их свойств, требований, предъявляемых к их качеству, надежности, стоимости. Способен анализировать и сопоставлять данные о характеристиках материалов с выработкой рекомендаций по их оптимальному выбору.
ОПК-12.3. Знает и использует методы измерений и стандартных испытаний важнейших свойств и целевых характеристик современных материалов, а также обработки полученных ре-	Знает основные методы определения свойств и эксплуатационных характеристик материалов (ЗН-2). Умеет проводить эксперименты, обрабатывать их результаты (У-2).	Ответы на вопросы к экзамену № 51-75. Курсовая работа.	Имеет представление об основных методах определения свойств и эксплуатационных характеристик материалов. Способен с помощью преподавателя проводить стандартные испытания материалов при решении практи-	Способен с помощью преподавателя выбирать наиболее оптимальные методики измерения и стандартных испытаний основных свойств и целевых характеристик современных материалов. Способен самостоя-	Использует на практике современные методы определения свойств и эксплуатационных характеристик материалов. Обладает навыками сбора, обработки, анализа и систематизации полученных в результате эксперимента результатов. Способен использовать

зультатов.	Владеет методами оценки по-	ческих задач.	тельно проводить	информационные техноло-
	грешности (Н-2).		стандартные испыта-	гии для сравнительного
			ния материалов при	анализа и экспертизы ма-
			решении практиче-	териалов, обработки полу-
			ских задач, обрабаты-	ченных результатов экспе-
			вать полученные ре-	римента, оценки погреш-
			зультаты.	ностей.

Шкала оценивания соответствует СТО СПбГТИ(ТУ):

По дисциплине промежуточная аттестация проводится в форме экзамена и защиты курсовой работы. Для получения экзамена должен быть достигнут «пороговый» уровень сформированности компетенций.

3. Типовые контрольные задания для проведения промежуточной аттестации

а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ОПК-7:

- 1. Материаловедение определение и объект изучения науки. Классификация материалов.
- 2. Природа химической связи и свойства материалов.
- 3. Типы кристаллических решеток, координационные числа, связь с плотностью и другими свойствами кристаллов. Типы дефектов в кристаллах. Влияние дефектов на прочность.
- 4. Упругая и пластическая деформация. Наклеп. Рекристаллизация.
- 5. Механические свойства материалов и способы их измерения.
- 6. Правило фаз Гиббса. Правило отрезков. Пример применения. Построение кривой охлаждения сплава.
- 7. Начертить двухкомпонентную диаграмму состояния для сплавов с отсутствием растворимости компонентов в твердом состоянии. Описать точки, линии, фазы и области на диаграмме.
- 8. Начертить двухкомпонентную диаграмму состояния для сплавов с неограниченной растворимостью компонентов в твердом состоянии. Описать точки, линии, фазы и области на диаграмме.
- 9. Начертить двухкомпонентную диаграмму состояния для сплавов с ограниченной растворимостью компонентов в твердом состоянии. Описать точки, линии, фазы и области на диаграмме.
- 10. Начертить двухкомпонентную диаграмму состояния для сплавов с образованием в твердом состоянии химического соединения. Описать точки, линии, фазы и области на диаграмме.
- 11. Равновесная диаграмма железо-углерод. Линии на диаграмме и критические точки.
- 12. Превращения в углеродистых сталях при нагревании. Фазовые превращения.
- 13. Превращения в углеродистых сталях при охлаждении. Перлитное превращение. Дать определение перлита, сорбита, троостита.
- 14. Дать определения и описать свойства феррита, аустенита, цементита. Как на их свойства влияет легирование.
- 15. Термические обработки закалка. Определение, зачем применяется. Как и почему при этом изменяются свойства.
- 16. Термическая обработка отпуск. Определение, зачем применяются. Как и почему при этом изменяются свойства.
- 17. Термическая обработка отжиг. Определение, виды, зачем применяется. Как и почему при этом изменяются свойства.
- 18. Термическая обработка нормализация. Упрочняющая термическая обработка закалка и старение.
- 19. Химико-термическая обработка. Цементация. Азотирование.
- 20. Химико-термическая обработка. Нитроцементация. Цианирование.
- 21. Химико-термическая обработка. Диффузионная металлизация.
- 22. Термомеханическая обработка (ВТМО, НТМО).
- 23. Углеродистые стали. Влияние углерода и примесей на структуру и свойства сталей. Маркировка углеродистых сталей.

- 24. Конструкционные легированные стали. Маркировка, влияние легирующих элементов на структуру и свойства сталей.
- 25. Стали с особыми свойствами. Нержавеющие, жаростойкие, жаропрочные стали.
- 26. Инструментальные материалы. Углеродистые и легированные инструментальные стали.
- 27. Автоматные стали. Литейные стали.
- 28. Износостойкие стали. Сталь Гадфильда. Графитизированная сталь.
- 29. Износостойкие стали. Штамповые стали.
- 30. Износостойкие стали. Подшипниковые стали.
- 31. Инструментальные материалы. Твердые сплавы.
- 32. Инструментальные материалы. Абразивные материалы.
- 33. Чугуны виды, получение, свойства, маркировка, применение.
- 34. Классификация алюминиевых сплавов. Закалка и старение алюминиевых сплавов. Определение, зачем применяются. Как и почему при этом изменяются свойства.
- 35. Деформируемые алюминиевые сплавы неупрочняемые термообработкой. Маркировка, состав, структура, свойства, применение.
- 36. Деформируемые алюминиевые сплавы упрочняемые термообработкой. Маркировка, состав, структура, свойства, применение.
- 37. Спеченные алюминиевые порошки. Марки, структура, состав, свойства, применение.
- 38. Литейные алюминиевые сплавы (силумины). Марки, структура, состав, свойства, применение.
- 39. Латуни. Маркировка, состав, свойства, применение.
- 40. Бронзы. Маркировка, состав, свойства, применение.
- 41. Сплавы на основе никеля.
- 42. Сплавы на основе титана.
- 43. Пластмассы. Структура. Термопласты, их свойства и применение.
- 44. Пластмассы. Структура. Реактопласты, их свойства и применение.
- 45. Электротехнические материалы. Проводниковые материалы с низким удельным сопротивлением. Сверхпроводники.
- 46. Электротехнические материалы. Проводниковые материалы с высоким удельным сопротивлением. Контактные материалы. Припои.
- 47. Композиционные материалы. Структура и свойства. Гетинакс, текстолит, стеклотекстолит, ДСП и т.д.
- 48. Виды коррозионных разрушений. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 49. Показатели коррозионной стойкости. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 50. Химическая и электрохимическая коррозия. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.

б) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ОПК-12:

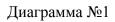
- 51. Материаловедение определение и объект изучения науки. Классификация материалов.
- 52. Природа химической связи и свойства материалов.
- 53. Типы кристаллических решеток, координационные числа, связь с плотностью и другими свойствами кристаллов. Типы дефектов в кристаллах. Влияние дефектов на прочность.
- 54. Упругая и пластическая деформация. Наклеп. Рекристаллизация.
- 55. Механические свойства материалов и способы их измерения.

- 56. Превращения в углеродистых сталях при нагревании. Фазовые превращения.
- 57. Превращения в углеродистых сталях при охлаждении. Перлитное превращение. Дать определение перлита, сорбита, троостита.
- 58. Дать определения и описать свойства феррита, аустенита, цементита. Как на их свойства влияет легирование.
- 59. Термические обработки закалка. Определение, зачем применяется. Как и почему при этом изменяются свойства.
- 60. Термическая обработка отпуск. Определение, зачем применяются. Как и почему при этом изменяются свойства.
- 61. Термическая обработка отжиг. Определение, виды, зачем применяется. Как и почему при этом изменяются свойства.
- 62. Термическая обработка нормализация. Упрочняющая термическая обработка закалка и старение
- 63. Углеродистые стали. Влияние углерода и примесей на структуру и свойства сталей. Маркировка углеродистых сталей.
- 64. Виды коррозионных разрушений. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 65. Показатели коррозионной стойкости. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 66. Химическая и электрохимическая коррозия. Влияние коррозионной стойкости металла на работоспособность и надежность изделий и конструкций из него.
- 67. Виды коррозии. Атмосферная коррозия.
- 68. Виды коррозии. Подземная коррозия.
- 69. Виды коррозии. Межкристаллитная коррозия.
- 70. Методы защиты от коррозии. Методы воздействия на коррозионную среду.
- 71. Методы защиты от коррозии. Металлические защитные покрытия.
- 72. Методы защиты от коррозии. Защитные покрытия на органической основе.
- 73. Методы защиты от коррозии. Защитные покрытия на неорганической основе.
- 74. Методы защиты от коррозии. Электрохимическая защита.
- 75. Методы защиты от коррозии. Защита на стадии проектирования

4. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок организации и проведения зачетов и экзаменов.

Выполнение курсовой работы по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 044-2012. КС УКДВ. Виды учебных занятий. Курсовой проект. Курсовая работа. Общие требования.


5. Примеры вопросов для выполнения контрольных работ:

Контрольная работа № 1

Номер Вашего варианта определяется последними двумя цифрами Вашей зачётной книжки, см. первую колонку в таблице 1.

Таблица 1

	П.1. 1.	П.1.3.	П.1.4.	П.1.5.	П.1.6.	П.1.9.	П.1.10.
Вари-	Номер	Химичес-	Структура	Кривая	Число	Кривая	Правило
ант	диа-	кий		охлаж-	степеней	охлажде-	отрезков
	граммы	состав		дения	свободы	ния	Fe-C
						Fe-C	
01	1	20% B	$Q_{(A+B)}=75\%$	10% B	20% B	0,5 %C	1000°C
		$T=250^{\circ}C$	$Q_A = 25\%$		$T=150^{0}C$		750^{0} C
			$T=100^{0}C$				
02	1	40% B	Q _B =70%	50% B.	20% B	0,75 %C	1450°C
		$T=50^{0}C$	$Q_{x} = 30\%$		$T=300^{0}C$		650^{0} C
			$T=350^{0}C$				
03	1	70% B	Q _(A+B) =25%	30% B.	5% B	0,9 %C	1200°C
		$T=200^{0}C$	$Q_A = 75\%$		$T=300^{0}C$		650^{0} C
			$T=300^{0}C$				
04	2	10% B	$Q_{x} = 20\%$	50% B	90% B	1,0 %C	1000°C
		$T=350^{0}C$	$Q_{\beta} = 80\%$		$T=250^{\circ}C$		650^{0} C
			$T=300^{0}C$				
05	2	15% B	Q _β =30%	90% B	50% B	1,5 %C	850°C
		$T=300^{0}C$	$Q_{\alpha} = 70\%$		$T=300^{0}C$		650^{0} C
			$T=100^{0}C$				
06	2	65% B	$Q_{x} = 20\%$	20% B	20% B	0,3 %C	1500°C
		$T=300^{0}C$	$Q_{\alpha} = 80\%$		$T=250^{\circ}C$		750^{0} C
			$T=300^{0}C$				

Диаграмма №2

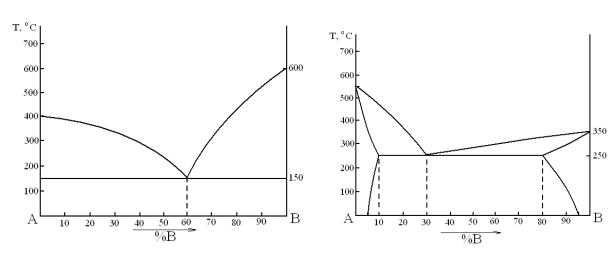
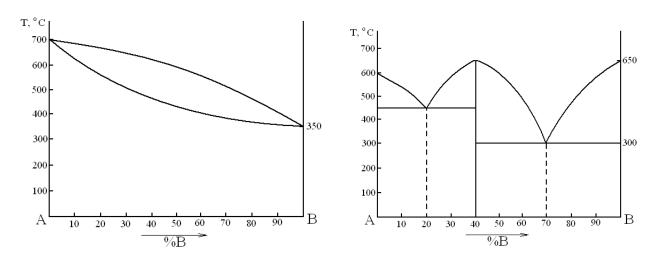



Диаграмма №3

Диаграмма №4

Контрольная работа № 2

Задание

- 1.1 Расшифровать марку и химический состав (включая примеси!) двух углеродистых сталей (таблица, П.1.1)
- 1.2 Описать структуру, механические и технологические свойства этой стали, область применения.
- 2.1 Расшифровать марку и химический состав (включая примеси!) двух легированных сталей (таблица, П.2.1)
 - 2.2 Выбрать режим термообработки.
- 2.3 Описать структуру после термообработки, механические и технологические свойства, область применения.

Таблица – Варианты заданий к контрольной работе № 2

1 4031	таблица Варианты задании к контрольной работе 312 2						
	$\Pi.1.1 - 1.2$	П.2.1 - 2.3					
Вариант	Углеродистые стали	Легированные стали					
01	БСт2пс сталь 08	14ХГС H18К7М5Т					
02	БСт0сп сталь 08кп	15X11MΦ H18K12M3T					
03	Ст4сп сталь 10кп	H18К8М3Т 12ХМФ					
04	БСт4пс сталь 10пс	X11H10M2T 20X					
05	Ст1кп сталь 10	15ΧΜΦ 07Χ21Γ7ΑΗ5					
06	БСт1сп сталь 15	60C2BA 20ΧΓΗΡ					
07	Ст5пс сталь 15кп	H18K9M5T 65Γ					
08	БСт5 сталь 15пс	20ХФ Х12Н9М2ДТ					
09	Ст6сп сталь 20	12XH4A 60C2H2A					
10	БСт6пс сталь 20пс	18ХГТ 09Х14Н16Б					

Контрольная работа № 3

Задание

- 3.1 Расшифровать марку двух алюминиевых сплавов данных в таблице (таблица, П.3.1). Привести химический состав, определить основной ЛЭ. Описать влияние легирующих элементов на свойства сплавов.
 - 3.2. Вычертить диаграмму Al основной ЛЭ для этих сплавов.
 - 3.3 Выбрать режим термообработки.
- 3.4 Описать структуру после термообработки, механические и технологические свойства, область применения.
- 4.1 Расшифровать марку двух медных сплавов данных в таблице (таблица, П.4.1). Привести химический состав. Определить основной ЛЭ. Описать влияние легирующих элементов на свойства сплавов.
 - 4.2 Вычертить диаграмму Си основной ЛЭ для этих сплавов.
 - 4.3 Выбрать режим термообработки.
- 4.4 Описать структуру после термообработки, механические и технологические свойства, область применения.

Таблица – Варианты заданий к контрольной работе № 3

Tuoming Duphantibi suganini k kontponditon paoote 312 5					
	$\Pi.3.1 - 3.4$			$\Pi.4.1 - 4.4$	
Вариант	Алюм	иниевые сплавы	Me	едные сплавы	
01	Амц	АЛ1	Л96	БрОЦС5-5-5	
02	АМг5	Д1	ЛС59-1	БрА7	
03	AK6	АЛ2	ЛАЖ60-1-1	БрКМц3-1	
04	Д20	АЛ9	ЛМц58-2	БрБ2	
05	АМг3	АЛ7	ЛО 62-1	БрС30	
06	АМц3	Д16	ЛК80-3	БрОФ6,5-0,4	
07	AK8	АЛ4	ЛС60-1	БрАЖ9-4	
08	АЛ19	АМц2	ЛАН59-3-2	БрК3	
09	АЛ8	Д16	ЛМцА57-3-1	БрБ2,5	
10	Амц	Д1	ЛО 70-1	БрС60Н2,5	