Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 20.10.2023 13:42:06 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
«17» июня 2021 г.

Рабочая программа дисциплины СИСТЕМЫ САЕ И САМ В РАСЧЕТЕ ОБОРУДОВАНИЯ НЕФТЕХИМИИ

Направление подготовки

15.04.02 Технологические машины и оборудование

Направленность программы бакалавриата

Интенсификация процессов и энергосберегающее технологическое оборудование

Квалификация

Магистр

Форма обучения

Очная

Факультет механический

Кафедра оптимизации химической и биотехнологической аппаратуры

Санкт-Петербург

2021 г.

ЛИСТ СОГЛАСОВАНИЯ

Должность разработчика	Подпись	Ученое звание, фамилия, инициалы
Старший преподаватель		Светлов С.Д.

Рабочая программа дисциплины «Системы САЕ и САМ в расчете оборудования нефтехимии» обсуждена на заседании кафедры оптимизации химической и биотехнологической аппаратуры протокол от «09» июня 2021 № 13 Заведующий кафедрой Р.Ш. Абиев

Одобрено учебно-методической комиссией механического факультета протокол от «11» июня 2021 № 9

Председатель А.Н.Луцко

СОГЛАСОВАНО

Руководитель направления подготовки «Технологические машины и оборудование»	А.Н. Луцко
Директор библиотеки	Т.Н. Старостенко
Начальник методического отдела учебно-методического управления	Т.И. Богданова
Начальник учебно-методического управления	С.Н. Денисенко

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	04
2. Место дисциплины (модуля) в структуре образовательной программы	06
3. Объем дисциплины	06
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	06
4.2. Занятия лекционного типа	07
4.3. Занятия семинарского типа	8
4.3.1. Семинары, практические занятия	8
4.3.2. Лабораторные занятия	8
4.4. Самостоятельная работа	8
5. Перечень учебно-методического обеспечения для самостоятельной работы обучаю	ощихся
по дисциплине	09
6. Фонд оценочных средств для проведения промежуточной аттестации	09
7. Перечень учебных изданий, необходимых для освоения дисциплины	09
8. Перечень электронных образовательных ресурсов, необходимых для одисциплины	
9. Методические указания для обучающихся по освоению дисциплины	09
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	
10.1. Информационные технологии	10
10.2. Программное обеспечение	10
10.3. Базы данных и информационные справочные системы	10
11. Материально-техническое обеспечение освоения дисциплины в ходе реализации	
образовательной программы	10
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	10

Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

В результате освоения образовательной программы магистратуры обучающийся должен овладеть следующими результатами обучения по дисциплине:

ПК-3	ПК-3.3	Знать:
Автоматическое проектирование и	Способен разрабатывать математические	основные этапы построения решения в готовых
контроль технологических	модели исследуемых машин, систем,	программных пакетах
процессов изготовления	процессов, явлений и объектов,	Уметь:
машиностроительных изделий	относящихся к профессиональной сфере	решать и анализировать полученные решения задач
высокой сложности и управление		гидродинамики и тепломассообмена в готовых
ими		программных пакетах
		Владеть:
		методами моделирования процессов гидродинамики и
		тепломассообмена в готовых программных пакетах

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к дисциплинам по выбору части формируемой участниками образовательных отношений (Б1.В.ДВ.02.02) и изучается на1 курсе во 2 семестре.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин «Современные технологии машиностроительных производств». Полученные в процессе изучения дисциплины «Системы САЕ и САМ в расчете оборудования нефтехимии» знания, умения и навыки могут быть использованы при прохождении производственной практики, а также при выполнении выпускной квалификационной работы.

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	6/ 216
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	78
занятия лекционного типа	32
занятия семинарского типа, в т.ч.	32
семинары, практические занятия (в том числе практическая подготовка)*	32(8)
лабораторные работы (в том числе практическая подготовка)	-
курсовое проектирование (КР или КП)	-
KCP	14
другие виды контактной работы	-
Самостоятельная работа	111
Форма текущего контроля (Кр, реферат, РГР, эссе)	РГР
Форма промежуточной аттестации (КР, КП, зачет, экзамен)	Экзамен (27)

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

		о типа,	семина	ятия арского па, м. часы	абота,	этенции	каторы
№ п/п	Наименование раздела дисциплины	Наименование Д Т Тия Насы		Лабораторные работы	Самостоятельная работа, академ. часы Формируемые компетенции	Формируемые индикаторы	
1.	Раздел 1. Основы AutoDesk Simulation Пространственная	16	16	-	55	ПК-3	ПК-3.3
	модель. Поверхностная модель.						
	Критические нагрузки и формы потери устойчивости.						
	Собственные частоты и формы						
	колебаний. Тепловой расчет.						
	Оптимизационная задача	1.6	1.0		5 .0		
2.	Раздел 2. Сборки. Прикладные задачи. Специальные методы моделирования. Расчетные сетки	16	16	-	56	ПК-3	ПК-3.3

4.2. Занятия лекционного типа.

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационна я форма
1	Основы AutoDesk Simulation	4	ЛВ, КОП ¹
	Знакомство с AutoDesk Simulator; структура панели		
	инструментов; возможности AutoDesk Simulation;		

¹ Примеры образовательных технологий, способов и методов обучения (с сокращениями): традиционная лекция (Л), лекция – пресс-конференция (ЛПК), занятие – конференция (ЗК), тренинг (Т), дебаты (Д), мозговой штурм (МШ), мастер-класс (МК), «круглый стол» (КрСт), активизация творческой деятельности (АТД), регламентированная дискуссия (РД), дискуссия типа форум (Ф), деловая и ролевая учебная игра (ДИ, РИ), метод малых групп (МГ), занятия с использованием тренажёров, имитаторов (Тр), компьютерная симуляция (КтСм), использование компьютерных обучающих программ (КОП), интерактивных атласов (ИА), посещение врачебных конференции, консилиумов (ВК), участие в научно-практических конференциях (НПК), съездах, симпозиумах (Сим), учебно-исследовательская работа студента (УИРС), проведение предметных олимпиад (О), подготовка письменных аналитических работ (АР), подготовка и защита рефератов (Р), проектная технология (ПТ), экскурсии (Э), дистанционные образовательные технологии (ДОТ).

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационна я форма
1	Пространственная модель. Поверхностная	4	ЛВ, КОП
	<u>модель</u>		
	Инструменты построения моделей твердых тел,		
	Виды моделей		
1	Критические нагрузки и формы потери	4	ЛВ, КОП
	устойчивости. Собственные частоты и формы		
	колебаний		
	Понятие критических нагрузок, устойчивость		
	деталей и конструкций, основы расчета		
4	собственных частот колебаний	4	HD KOH
1	Тепловой расчет. Оптимизационная задача	4	ЛВ, КОП
	Основы тепловых расчетов в AutoDesk		
	Simulation, задание начальных и граничных		
2	условий	4	пр коп
2	Сборки	4	ЛВ, КОП
2	Сборные модели в AutoDesk Inventor	4	ЛВ, КОП
2	Прикладные задачи	4	JIB, KUII
	Расчеты элементов конструкций, практическая применимость AutoDesk Simulation		
2		4	ЛВ, КОП
2	Специальные методы моделирования Специальные граничные условия, расчет задач	4	Jib, KOII
	со сложной геометрией		
2	Расчетные сетки	4	ЛВ, КОП
	<u>гасчетные сетки</u> Виды расчетных сеток, особенности задания,		JID, KOII
	типичные ошибки при построении сеток		
	Thin hibre omnown hiph hoerpoennin cerok		

4.3. Занятия семинарского типа.

*Графа «в том числе на практическую подготовку» заполняется только для дисциплин с ΠK .

4.3.1. Семинары, практические занятия.

<u> No</u>			Объем, кад. часы	
раздела дисциплин ы	Наименование темы и краткое содержание занятия	всего	в том числе на практическу ю	Инновационная форма
1	Основы AutoDesk Simulation	4	2	
	Создание документов различных типов; изучение интерфейса панели инструментов; изменение пользовательских настроек панели инструментов, дополнительные возможности			КОП

No	Наимоморамие жому		Объем, кад. часы	Иуууарауууаууа
раздела дисциплин ы	Наименование темы и краткое содержание занятия	всего	в том числе на практическу ю	Инновационная форма
1	Пространственная модель. Поверхностная модель Построение моделей твердых тел при помощи различных инструментов Autodesk Inventor; редактирование тел	4	1	КОП
1	Критические нагрузки и формы потери устойчивости. Собственные частоты и формы колебаний Расчет собственных частот колебаний	4	1	КОП
1	Сборки Создание документа; добавление деталей, выбор привязок, массивы в сборках, стандартные изделия в сборках, спецификация сборки	8	2	КОП
2	Прикладные задачи Расчет сосудов под давлением, анизотропные конструкции	4	2	КОП
2	Специальные методы моделирования Моделирование падения тел. Расчет на усталость	4	1	КОП
2	Расчетные сетки Создание сеток различных параметров, анализ влияния на точность решения	4	1	КОП

4.4. Самостоятельная работа обучающихся.

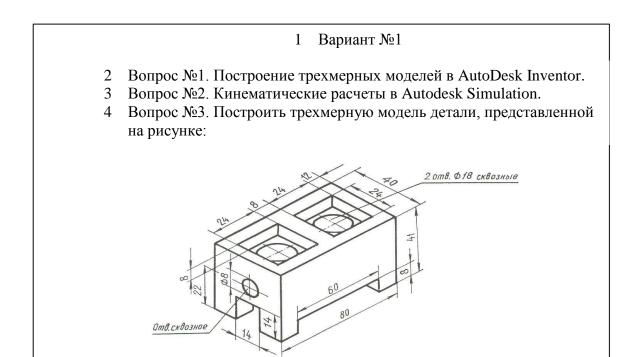
№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
1	Критерий максимальных нормальных напряжений. Системы координат и справочная геометрия. Единицы измерения. Дискретизация. Общие положения. Порядок элементов и точность расчета. Сетка твердотельная и сетка поверхностная. Параметры настройки. Сохранение результатов в графических файлах. Протоколы сценариев проектирования. Отчеты	55	РГР №1
1	Анализ. Точность. Характерные ошибки. Результаты и их интерпретация. Задача термоупругости. Постановка задачи и основные алгоритмы. Обязательный набор исходных данных. Точность и сходимость. Параметры настройки. Особенности моделирования. Характерные ошибки. Результаты и их интерпретация		РГР №1
2	Параметры материалов. Нагрузки. Настройки вычислительного процесса. Сетка. Дополнительные настройки решателя. Результаты и их интерпретация. нагрузки. Выполнение расчета. Анализ результатов расчета.		Устный опрос

4.5 Темы РГР и индивидуального задания

РГР – Расчет гидродинамических характеристик простой конструкции

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационнообразовательной среде СПбГТИ(ТУ) на сайте: https://media.technolog.edu.ru


6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме экзамена.

Экзамен предусматривают выборочную проверку освоения предусмотренных элементов компетенций и комплектуются вопросами (заданиями) двух видов: теоретический вопрос (для проверки знаний) и комплексная задача (для проверки умений и навыков).

При сдаче экзамена студент получает два вопроса из перечня вопросов, время подготовки студента к устному ответу - до 45 мин.

Пример варианта вопросов на экзамене:

Фонд оценочных средств по дисциплине представлен в Приложении № 1

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – оценка «удовлетворительно» 2 .

7. Перечень учебных изданий, необходимых для освоения дисциплины

а) печатные издания:

- 1. Соколова, Т.Ю. AutoCAD для студента / Т.Ю. Соколова СПб.: Питер, 2008. 330 с.
- 2. Норенков, И.П. Автоматизированные информационные системы / И.П. Норенков. М.: Изд-во МГТУ им. Н.Э. Баумана, 2011. 342 с.
- 3. Берлинер, Э.М. САПР в машиностроении / Э.М. Берлинер, О.В. Таратынов. М.: Форум, 2010. 447 с.
- 4. Пузанов А. В. Инженерный анализ в Autodesk Simulation Multiphysics. Методическое руководство/Пузанов АВ. 2012. 912с.

б) электронные учебные издания³:

- 1. Левковец Л.Б., Autodesk Inventor. Базовый курс на примерах / Л.Б. Левковец СПб.: БХВ-Петербург. 2008. 380с.
- 2. Гузненков В.Н., Autodesk Inventor в курсе инженерной графики / В.Н. Гузненков М.: Горячая линия—Телеком. 2009. 143с.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

учебный план, РПД и учебно-методические материалы: http://media.technolog.edu.ru

_

² Для промежуточной аттестации в форме зачёта – «зачёт».

³ В т.ч. и методические пособия

Электронно-библиотечная система СПБГТИ(ТУ) https://technolog.bibliotech.ru уроки по Autodesk Inventor https://autocad-lessons.ru/

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Системы сае и сат в расчете оборудования нефтехимии» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение⁴.

Microsoft Office (Microsoft Word);

Autodesk Inventor.

10.3. Базы данных и информационные справочные системы.

Справочно-поисковая система «Консультант-Плюс»

Широкое использование студентами и преподавателями поисковых систем Google.com, Yandex.ru.

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы 5 .

Специализированная мебель (15 посадочных мест), демонстрационный экран, видеопроекционная система, пластиковая доска; компьютер с выходом в Интернет

⁴ В разделе отображаются комплекты лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для обеспечения дисциплины

⁵ В разделе отображается состав помещений, которые представляют собой учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой по дисциплине, оснащенные оборудованием и техническими средствами обучения.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Системы САЕ и САМ в расчете оборудования нефтехимии»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание ⁶	Этап формирования ⁷
ПК-3	Автоматическое проектирование и контроль технологических процессов изготовления машиностроительных изделий высокой сложности и управление ими	промежуточный

⁶ **Жирным шрифтом** выделяется та часть компетенции, которая формируется в ходе изучения данной дисциплины (если компетенция осваивается полностью, то фрагменты не выделяются).

⁷ Этап формирования компетенции выбирается по п. 2 РПД и учебному плану (начальный – если нет предшествующих дисциплин, итоговый – если нет последующих дисциплин (или компетенция не формируется в ходе практики или ГИА), промежуточный - все другие)

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование индикатора	Показатели	Критерий	Уровни сформированности (описание выраженности дескрипторов)		
достижения компетенции	сформированности (дескрипторы)	оценивания	«удовлетворительно» (пороговый)	«хорошо» (средний)	«отлично» (высокий)
ПК-3.3 Способен разрабатывать математические модели исследуемых машин, систем, процессов, явлений и объектов, относящихся к профессиональной	Знает интерфейс, составные части, меню, панели инструментов, взаимодействие с AutoDesk Inventor, исходные данные, состав результатов, собственные частоты и формы колебаний, функциональные возможности, граничные условия, дискретизацию сборок, границы применимости линейной и нелинейной модели	Правильные ответы на вопросы №1-10 к экзамену	Путается интерфейсе, составе результатов, порядке расчета, не знает границы применимости	Знает интерфейс и порядок расчета, особенности моделей	Показывает уверенные знания интерфейса и возможностей AutoDesk Inventor, знает порядок расчета, оформления результатов, границы применимости моделей
сфере	Владеет программным комплексом AutoDesk Inventor	Успешное выполнение РГР	Неуверенно владеет функциями современных САЕ систем	Владеет методами построения моделей и решения в современных САЕ системах	Уверенно владеет методами построения моделей и решения в современных САЕ системах
	Умеет Строить сетку, задавать граничные условия и необходимый набор обязательных условий, Производить анализ, интерпретировать результаты, оценивать точность, строить монолитные сборки, решать контактные задачи, задавать кинематические граничные условия	Успешное выполнение РГР и правильные ответы на вопросы № 11-27 к экзамену	Неуверенно строит сетки, задает граничные условия и анализирует результаты	Строит решение, расчетные сетки, знает основные этапы построения модели, умеет создавать монолитные сборки и решать кинематические задачи	Уверенно строит решение задачи в САЕ системах, использует весь спектр настроек для получения точных решений

3. Типовые контрольные задания для проведения промежуточной аттестации

- 1. Интерфейс, составные части меню, панели инструментов AutoDesk Inventor.
- 2. Виды документов AutoDesk Inventor. Создание новых документов.
- 3. Основные инструменты AutoDesk Inventor.
- 4. Построение расчетных сеток. Вид сеток.
- 5. Задание начальных условий
- 6. Задание граничных условий
- 7. Построение трехмерных моделей в AutoDesk Inventor.
- 8. Анализ результатов моделирования.
- 9. Оценка точности расчетов.
- 10. Применимости линейных и нелинейных моделей.
- 11. Тепловые расчеты.
- 12. Задание сеток, начальных и граничных условий.
- 13. Сборки деталей в AutoDesk Inventor.
- 14. Сопряжения. Виды сопряжений.
- 15. Контактные задачи при сборке.
- 16. Разъемные соединения.
- 17. Анизотропные материалы.
- 18. Особенности расчета дисков.
- 19. Особенности расчетов ферм.
- 20. Моделирование падения тел.
- 21. Необходимые условия задач о падение тел.
- 22. Усталостные расчеты.
- 23. Анализ точности усталостных расчетов.
- 24. Кинематические граничные условия.
- 25. Кинематические расчеты в Autodesk Simulation.
- 26. Расчет пластин. Порядок расчета.
- 27. Расчет пластин.

При сдаче экзамена, студент получает три вопроса из перечня, приведенного выше. Время подготовки студента к устному ответу на вопросы - до 45 мин.

4. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТП СТО СПбГТИ(ТУ) 016-2015. КС УКДВ Порядок проведения зачетов и экзаменов.

По дисциплине промежуточная аттестация проводится в форме экзамена.