Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 16.11.2023 17:01:50 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной и методической работе
Б.В.Пекаревский
« 12 » января 2022 г.

Рабочая программа дисциплины ЭЛЕМЕНТЫ И СИСТЕМЫ ЭЛЕКТРО-, ПНЕВМО-, ГИДРОАВТОМАТИКИ

Специальность

15.05.01 Проектирование технологических машин и комплексов

Специализация

№20«Проектирование технологических комплексов производства энергонасыщенных материалов»

Квалификация

инженер

Форма обучения

Очная

Факультет информационных технологий и управления

Кафедра автоматизации процессов химической промышленности

Санкт-Петербург

2022

ЛИСТ СОГЛАСОВАНИЯ

Должность	Подпись	Ученое звание, фамилия, инициалы
Доцент		доцент Н.А. Сягаев
Доцент		доцент М.В. Соколов

Рабочая программа дисциплины «Элементы и системы электро-, пневмо-, гидроавтоматики» обсуждена на заседании кафедры автоматизации процессов химической промышленности

протокол от «29» декабря 2021 № 3

Заведующий кафедрой

Л.А.Русинов

Одобрено учебно-методической комиссией факультета информационных технологий и управления

протокол от «29» декабря 2021 № 4

Председатель

В.В.Куркина

СОГЛАСОВАНО

Ответственный за направление подго-	А.Г. Ишутин
товки по специальности «Проектиро-	
вание технологических машин и ком-	
плексов», специализация №20	
Директор библиотеки	Т.Н. Старостенко
Начальник методического отдела	М.З. Труханович
учебно-методического управления	
Начальник УМУ	С.Н.Денисенко

СОДЕРЖАНИЕ

1. Перечень планируемых результатов ооучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	4
2 Место дисциплины в структуре образовательной программы	
3 Объем дисциплины	5
4 Содержание дисциплины	
4.1 Разделы дисциплины и виды занятий	6
4.2 Формирование индикаторов достижения компетенций разделами дисциплины	6
4.3 Занятия лекционного типа	6
4.4 Занятия семинарского типа	8
4.4.1 Практические занятия	8
4.4.2 Лабораторные занятия	9
4.5 Самостоятельная работа обучающихся	10
5. Перечень учебно-методического обеспечения для самостоятельной работы	
обучающихся по дисциплине	10
6. Фонд оценочных средств для проведения промежуточной аттестации	10
7. Перечень основной и дополнительной учебной литературы, необходимой для освоен	КИ
дисциплины	11
8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
необходимых для освоения дисциплины	12
9. Методические указания для обучающихся по освоению дисциплины	12
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	13
10.1. Информационные технологии	
10.2. Программное обеспечение	13
10.3. Информационные справочные системы	13
11. Материально-техническая база, необходимая для осуществления образовательного	
процесса по дисциплине	13
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	13
Приложение 1	15

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения образовательной программы специалитета обучающийся должен овладеть следующими результатами обучения по дисциплине:

Коды компетенции	Код и наименование индикатора достижения компетенции	Планируемые результаты обучения (дескрипторы)
ПК-3 Способен проводить автоматизацию и механизацию производственных процессов	ПК-3.1 Аналоговые элементы, интегральные операционные усилители. Пневматические, гидравлические, электрические исполнительные механизмы.	Знать: структуру, состав и принцип действия элементов электро-, гидро- и пневмосистем. Уметь: использовать методы диагностики и технические средства для получения информации о состоянии элементов и систем электро- и гидравтоматики механического оборудования. Владеть: основными методами и средствами сбора информации о состоянии технических средств электро- и гидросистем и навыками устранения выявленных недостатков в работе оборудования.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к дисциплинам обязательной части (Б1.О.33) и изучается на 3 курсе в 6 семестре.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин: «Математика», «Физика», «Материаловедение», «Теория машин и механизмов», «Электротехника и электроника», «Основы гидромеханики. Насосы, компрессоры, вентиляторы», «Системы автоматизированного технологического проектирования».

Полученные в процессе изучения дисциплины «Элементы и системы электро-, пневмо-, гидроавтоматики» знания, умения и навыки могут быть использованы в научно-исследовательской работе специалиста и при выполнении выпускной квалификационной работы.

3 Объем дисциплины

Вид учебной работы	Всего, академических часов
Big fleehen pacers	Очная форма обучения
Общая трудоемкость дисциплины	5/ 180
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	90
занятия лекционного типа	36
занятия семинарского типа, в т.ч.	36
семинары, практические занятия (в том числе практическая подготовка)	18 (4)
лабораторные работы	18
курсовое проектирование (КР или КП)	KP(18)
КСР	-
другие виды контактной работы	-
Самостоятельная работа	54
Форма текущего контроля (Кр, реферат, РГР, эссе)	-
Форма промежуточной аттестации (КР, КП, зачет, экзамен)	КР, экзамен (36)

4 Содержание дисциплины

4.1 Разделы дисциплины и виды занятий

		типа,	Занятия семинарского типа, академ. часы		работа,	генции
№ п/п	Наименование раздела дисциплины	Занятия лекционного акад. часы	Семинары и/или практические заня- тия	Лабораторные рабо- ты	Самостоятельная ра акад. часы	Формируемые компетенции
1	Введение	2				ПК-3
2	Электромеханические элементы автома-	4		4	6	ПК-3
	тики, командоаппараты и аппаратура защиты.					
3	Электронные элементы автоматики	6		4	4	ПК-3
4	Пневматические и гидравлические эле- менты автоматики	6		4	6	ПК-3
5	Электрические и пневматические регуляторы	6	10	6	12	ПК-3
6	Исполнительные механизмы	6	4		14	ПК-3
7	7 Регулирующие органы		4		12	ПК-3
Итог	Итого		18	18	54	

4.2 Формирование индикаторов достижения компетенций разделами дисциплины

№ п/п	Код индикаторов достижения компе- тенции	Наименование раздела дисциплины
1.	ПК-3.1	Введение
		Электромеханические элементы автоматики, командоаппара-
		ты и аппаратура защиты.
		Электронные элементы автоматики
		Пневматические и гидравлические элементы автоматики
		Электрические и пневматические регуляторы
		Исполнительные механизмы
		Регулирующие органы

4.3 Занятия лекционного типа

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
1	Введение Назначение и проблемы проектирования технических средств автоматизации (TCA), место		Слайд- презентация

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	TCA в системе управления, стандартизация TCA, классификация.		
2	Электромеханические элементы автоматики, командоаппараты и аппаратура защиты. Аналоговые элементы — потенциометрические, тензометрические, индуктивные, емкостные, пьезоэлектрические. Принцип действия, статические характеристики. Дискретные элементы — реле, контакторы, переключатели. Магнитные пускатели, путевые и конечные выключатели, тепловые реле, автоматические выключатели.	4	Слайд- презентация
3	Электронные элементы автоматики Интегральные операционные усилители. Применение операционных усилителей в функциональных блоках агрегатных комплексов. Тиристоры. Основные характеристики и методы управления. Использование тиристоров в пусковых устройствах и усилителях для управления исполнительными механизмами. Микросхемные логические элементы.	6	Слайд- презентация
4	Пневматические и гидравлические элементы автоматики Элементы непрерывной техники. Элементы дискретной техники. Преобразователь типа «сопло-заслонка». Функциональные элементы пневмоавтоматики. Золотниковые управляющие элементы. Вспомогательные элементы систем гидроавтоматики. Моделирование систем автоматики	6	Слайд- презентация
5	Электрические и пневматические регуляторы Обобщенная структурная схема пневматических регуляторов. Особенности, область применения. Пневматическая агрегатная система «СТАРТ». Агрегатные, приборные пневматические регуляторы. Особенности и область применения. Приборные позиционные регуляторы. Пропорциональный регулятор (балансное реле). Агрегатные комплексы «КОНТУР, КАСКАД, АКЭСР». Импульсный регулятор, принцип действия. Обобщенная структурная схема цифрового регулятора. Цифровые регуляторы. Программируемые микропроцессорные контроллеры.	6	Слайд- презентация
6	Исполнительные механизмы Классификация. Требования к исполнительным механизмам. Пневматические, гидравлические,	6	Слайд- презентация

№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	электрические исполнительные механизмы.		
7	<u>Регулирующие органы</u> Классификация. Требования к регулирующим органам. Характеристики регулирующих органов.	6	Слайд- презентация
Итого		36	

4.4 Занятия семинарского типа

4.4.1 Практические занятия

No			Объем,		
раздела	Наименование темы	акад. часы		Инновационная	
дисципли-	и краткое содержание занятия	всего	в том числе на практическую подготовку	форма	
5	Электрические и пневматические регуляторы Изучение регуляторов системы «СТАРТ», знакомство с методиками определения их динамических характеристик. Изучение приборов с позиционными регуляторами, встраиваемыми в приборы типа КС, регулирующих контроллерами, программируемых контроллерами типа «ПРОТАР», «МИНИТЕРМ»	10		Технология критического мышления (дискуссия, систематизация)	
6	Исполнительные механизмы Студенты изучают конструктивные особенности пневматических исполнительных механизмов мембранного (МИМ) и поршневого типов (ПСП), электродвигательных исполнительных механизмов типа МЭО, изучают их характеристики.	4	2	Технология критического мышления (дискуссия, систематизация)	
7	Регулирующие органы студенты изучают конструктивные особенности дросселирующих и дозирующих регулирующих органов, знакомятся с их характеристиками.	4	2	Технология критического мышления (дискуссия, систематизация)	
Итого		18			

4.4.2 Лабораторные занятия

	таоораторные запитии		
№ раздела дис- циплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
2	Электромеханические элементы автоматики, командоаппараты и аппаратура защиты. «Электромагнитные реле в системах автоматики». Изучение электромагнитного реле. Принцип действия, области применения, конструкция, статическая и временные характеристики. «Индуктивный преобразователь». Изучение принципа действия индуктивных преобразова-	4	
3	телей. Снятие статических характеристик. <u>Электронные элементы автоматики</u> Изучение и исследование основных базовых логических элементов потенциальной логики. Знакомство с работой типовых узлов микропроцессоров.	4	
4	Пневматические и гидравлические элементы автоматики Изучение пневматического реле. Принцип действия, области применения, конструкция, статическая характеристика.	4	
5	Электрические и пневматические регуляторы Изучение приборного регулятора, встраиваемого в приборы КСЗ. Принципиальная схема. Реализация ПИ-закона регулирования. Поверка настроек регулятора. Изучение принципа действия импульсного регулятора, реализующего ПИ- и ПИД-законы регулирования. Снятие временных характеристик импульсного регулятора. Изучение функциональных возможностей микропроцессорного регулятора, получение необходимых практических навыков работы с ним. Изучение структуры логического контроллера, способов организации приема его входных и формирования выходных аналоговых и дискретных сигналов.	6	
Итого		18	

4.5 Самостоятельная работа обучающихся

	постоятсявная работа боў тающихся		
№ раздела дис- циплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма кон- троля
2	Электромеханические элементы автоматики, командоаппараты и аппаратура защиты. Аналоговые элементы: емкостные, тензометрические, пьезоэлектрические. Магнитные пускатели, автоматические выклю-	6	Устный опрос
	чатели.		
3	Электронные элементы автоматики Тиристоры. Основные характеристики и методы управления	4	Устный опрос
4	Пневматические и гидравлические элементы автоматики Стабилизаторы расхода и давления, механопневматические преобразователи	6	Устный опрос
5	Электрические и пневматические регуляторы Функциональные блоки системы «Старт». Импульсный регулятор. Принцип действия	12	Устный опрос
6	Исполнительные механизмы Гидравлические исполнительные механизмы	14	Устный опрос
7	Регулирующие органы Дозирующие регулирующие органы	12	Устный опрос
Итого		54	

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме защиты курсой работы и экзамена. Экзамен предусматривают выборочную проверку освоения предусмотренных элементов компетенций. К сдаче допускаются студенты, выполнившие все формы текущего контроля.

При сдаче экзамена студент получает два вопроса перечня вопросов к экзамену, время подготовки студента к устному ответу - до 40 мин

Пример варианта вопросов на экзамене:

- 1. Электромагнитное реле постоянного тока. Принцип действия, характеристики.
- 2. Пневматический пропорционально-интегральный регулятор ПР3.31. Принцип действия, характеристики.

Фонд оценочных средств по дисциплине представлен в Приложении № 1

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) печатные издания:

- 1. Раннев, Г.Г. Измерительные информационные системы : учебник для вузов/ Г.Г. Раннев. Москва: Академия, 2010. 336 с. ISBN 978-5-7695-5979-2/
- 2. Шандаров, Б.В. Технические средства автоматизации: учебник для студ. высш. учеб. заведений/ Б.В. Шандаров, А.Д. Чудаков. Москва: Издательский центр Академия, 2007. 368 с. ISBN 978-5-7695-3624-3
- 3. Мартяков, А.И. Функциональные узлы и устройства автоматики: учебное пособие / А.И. Мартяков. Москва: МГИУ, 2006. 140 с. ISBN 5 -276-00-742-X
- 4. Сягаев, Н.А. Релейно-импульсный регулятор: методические указания / Н.А. Сягаев ; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. Санкт-Петербург: [б.и.], 2009. 23 с.
- 5. Сягаев, Н.А. Исполнительные устройства автоматики: методические указания / М.В. Соколов, Н.А. Сягаев; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. Санкт-Петербург: [б.и.], 2009. 18 с.
- 6. Сягаев, Н.А. Программируемый контроллер FP1: методические указания / Н.А. Сягаев, Ю.А. Новичков, И.В. Рудакова; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. Санкт-Петербург: [б.и.], 2010. 19 с.
- 7. Сягаев, Н.А. Электромагнитные реле в системах автоматики: методические указания / Н.А. Сягаев, Ю.А. Новичков; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. Санкт-Петербург: [б.и.], 2013. 19 с.
- 8. Сягаев, Н.А. Приборный пневматический регулятор, встраиваемый в приборы типа КС3: методические указания / Н.А. Сягаев, Ю.А. Новичков; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. Санкт-Петербург: [б.и.], 2013. 14 с.

б) электронные учебные издания:

- 1. Сягаев, Н.А. Расчет и проектирование технических средств автоматизации. Расчет электромагнитного исполнительного устройства: методические указания/ Н.А. Сягаев, М.В. Соколов. Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. Санкт-Петербург: СПбТИ(ТУ), 2007. 24 с. / СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 06.04.2019). Режим доступа: для зарегистрир. пользователей.
- 2. Сягаев, Н.А. Расчет и проектирование технических средств автоматизации. Расчет индуктивных преобразователей: методические указания/ Н.А. Сягаев, Ю.А. Новичков. Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. Санкт-Петербург: СПбТИ(ТУ), 2007. 24 с. / СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 06.04.2019). Режим доступа: для зарегистрир. Пользователей

3. Сягаев, Н.А. Расчет и проектирование технических средств автоматизации. Расчет регулирующего органа: методические указания / Н.А. Сягаев, М.В. Соколов, В.Г. Харазов. – Санкт-Петербургский государственный технологический институт (технический университет), Кафедра автоматизации процессов химической промышленности. – Санкт-Петербург: СПбТИ(ТУ), 2007. – 18 с. / СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 06.04.2019). – Режим доступа: для зарегистрир. Пользователей

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- учебный план, РПД и учебно-методические материалы: http://media.technolog.edu.ru
- электронный учебник «Автоматизация механического оборудования, электро- и гидропривод» http://studme.org/1455042310874/menedzhment/upravlenie_kachestvom
- сайт «НПО Техноконт» http://www.technocont.ru;
- сайты фирм разработчиков АСУТП: <u>www.adastra.ru</u>; <u>www.foit.ru</u>; <u>www.metso.ru</u>;
 www.siemens.ru;
 - Электронная библиотека СПбГТИ(ТУ) (на базе ЭБС «БиблиоТех») Принадлежность собственная СПбГТИ(ТУ).

Договор на передачу права (простой неисключительной лицензии) на использования результата интеллектуальной деятельности ООО «БиблиоТех»

ГК№0372100046511000114 135922 от 30.08.2011

Адрес сайта – http://bibl.lti-gti.ru/

Интернет-ресурсы: проводить поиск в различных системах, таких как www.yandex.ru, www.google.ru, www.rambler.ru, www.yahoo.ru и использовать материалы сайтов, рекомендованных преподавателем на лекционных занятиях.

С компьютеров института открыт доступ к:

www.elibrary.ru - eLIBRARY - научная электронная библиотека периодических изданий

9. Методические указания для обучающихся по освоению дисциплины

Все виды занятий по дисциплине «Элементы и системы электро-, пневмо-, гидроавтоматики» проводятся в соответствии с требованиями следующих СТП:

СТО СПбГТИ 020-2011. КС УКДВ. Виды учебных занятий. Лабораторные занятия. Общие требования к организации и проведению.

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТО СПбГТИ(ТУ) 044-2012. КС УКДВ. Виды учебных занятий. Курсовой проект. Курсовая работа. Общие требования;

СТП СПбГТИ 048-2009. КС УКВД. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

СТП СПбГТИ 016-2015. КС УКВД. Порядок проведения зачетов и экзаменов.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является: плановость в организации учебной работы; серьезное отношение к изучению материала; постоянный самоконтроль.

На занятия студент должен приходить, имея багаж знаний и вопросов по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

10.1. Информационные технологии

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение

- Microsoft Office Std, Академическая лицензия, сублицензионный договор №02(03)15 от 20.01.2015, с 20.01.2015 бессрочно;
- PTC Mathcad (ГК №19 от 13.10.08 г. на предоставление академической лицензии на MathCAD University Department Perpetual-200 Floating);

10.3. Информационные справочные системы

http://prometeus.nse.ru – база ΓΠΗΤБ СО РАН.

http://borovic.ru - база патентов России.

http://1.fips.ru/wps/portal/Register - Федеральный институт промышленной собственности

http://gost-load.ru- база ГОСТов.

http://worlddofaut.ru/index.php - база ΓОСТов.

http://elibrary.ru - Российская поисковая система научных публикаций.

11. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

- 1. Для проведения занятий в интерактивной форме: кафедра автоматизации процессов химической промышленности, аудитория №13. 190013, г. Санкт-Петербург, Московский проспект, д. 24-26/49, лит. Е. Оснащение: специализированная мебель (30 посадочных мест), доска, демонстрационный экран, компьютер.
- 2. Для проведение лабораторных занятий:
- кафедра автоматизации процессов химической промышленности, лаборатория аудитория №15 190013, г. Санкт-Петербург, Московский проспект, д. 24-26/49, лит. Е. Оснащение: специализированная мебель, два стенда элементов пневмоавтоматики, пневматический стенд программирования манипулятора, стенд управления системой из двух манипуляторов, установка для изучения мембранного и поршневого исполнительных механизмов, стенд исследования перистальтических насосов, вакуумный пневматический питатель для дозирования сыпучих материалов.
- кафедра автоматизации процессов химической промышленности, помещение для самостоятельной работы, лаборатория аудитория №16 190013, г. Санкт-Петербург, Московский проспект, д. 24-26/49, лит. Е. Оснащение: специализированная мебель, доска, 14 учебных и поверочных стендов; оснащенные техническими средствами автоматизации и программируемыми контроллерами Siemens S7-300, Trei, OBEH 150, MIC-2000, TPM151-06, OBEH ПЛК110, панель сенсорная СП310
- 3. Для самостоятельной работы студентов и занятий по курсовому проектированию:
- кафедра автоматизации процессов химической промышленности, помещение для самостоятельной работы, аудитория №14 190013, г. Санкт-Петербург, Московский проспект, д. 24-26/49, лит. Е. Оснащение: специализированная мебель (20 посадочных мест).
- кафедра автоматизации процессов химической промышленности, лаборатория аудитория №18 190013, г. Санкт-Петербург, Московский проспект, д. 24-26/49, лит. Е. Оснащение: специализированная мебель (24 посадочных места), доска, 12 компьютеров, сетевое оборудование.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014г.

Приложение 1

к рабочей программе дисциплины

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Элементы и системы электро-, пневмо-, гидроавтоматики»

1 Перечень компетенций и этапов их формирования.

Компетенции					
Индекс	Формулировка	Этап формиро- вания			
ПК-3	Способен проводить автоматизацию и механизацию производственных процессов	промежуточный			

2.Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование	Показатели сформирован-	(Vnymany)	Уровни сформированности (описание выраженности дескрипторов)			
индикатора достижения	± ± ±	«Критерий	`		• ′	
компетенции	ности (дескрипторы)	оценивания	«удовлетворительно»	«хорошо»	«ОНРИЦТО»	
TIC 2.1	05	П	(слабый)	(средний)	(высокий)	
ПК-3.1	Объяснять структуру, пе-	Правильные от-	Частично знает но-	Частично знает но-	Знает номенклатуру	
Аналоговые элементы,	речислять состав и прин-	веты на вопросы	менклатуру первич-	менклатуру первич-	первичных измери-	
интегральные операци-	цип действия элементов	№ 1-17	ных измерительных	ных измерительных	тельных преобразо-	
онные усилители.	электро-, гидро- и пнев-	к экзамену.	преобразователей,	преобразователей,	вателей, нормирую-	
Пневматические, гид-	мосистем.		нормирующих преоб-	нормирующих пре-	щих преобразовате-	
равлические, электри-	(3H-3)		разователей, регуля-	образователей, регу-	лей, регуляторов ис-	
ческие исполнительные			торов исполнитель-	ляторов исполни-	полнительных меха-	
механизмы.			ных механизмов, ре-	тельных механизмов,	низмов, регулирую-	
			гулирующих органов,	регулирующих орга-	щих органов, типы	
			типы электромехани-	нов, типы электро-	электромеханиче-	
			ческих элементов их	механических эле-	ских элементов их	
			характеристики,	ментов их характе-	характеристики,	
			принцип работы, кон-	ристики, принцип	принцип работы,	
			струкцию. Не знает	работы, конструк-	конструкцию. Знает	
			типы исполнительных	цию. Знает типы ис-	типы исполнитель-	
			механизмов, типы	полнительных меха-	ных механизмов, ти-	
			дросселирующих ре-	низмов, типы дрос-	пы дросселирующих	
			гулирующих органов,	селирующих регули-	регулирующих орга-	
			принцип их работы.	рующих органов,	нов, принцип их ра-	
				принцип их работы.	боты.	
	Использовать методы диа-	Правильные от-	Неуверенно применя-	Применяет электро-	Применяет электро-	
	гностики и технические	веты на вопросы	ет электромеханиче-	механические эле-	механические эле-	
	средства для получения	№18-20, 39-42 к	ские элементы в схе-	менты в схемах	менты в схемах	
	информации о состоянии	экзамену и за-	мах управления, сиг-	управления, сигна-	управления, сигна-	
	элементов и систем	щита курсовой	нализации. Не полно-	лизации. Неуверенно	лизации. Показывает	
	электро- и гидравтомати-	работы	стью показывает спо-	показывает способы	способы выбора тип	
	ки механического обору-	риооты	собы выбора тип ре-	выбора и тип регу-	регулирующего или	

Код и наименование			Уровни сформированности			
индикатора достижения	Показатели сформирован-	«Критерий	(описание выраженности дескрипторов)			
компетенции	ности (дескрипторы)	оценивания	«удовлетворительно»	«хорошо»	«отлично»	
компетенции			(слабый)	(средний)	(высокий)	
	дования.		гулирующего или	лирующего или	функционального	
	(Y-2)		функционального	функционального	блока для реализа-	
			блока для реализации	блока для реализа-	ции системы автома-	
			системы автоматиче-	ции системы автома-	тического регулиро-	
			ского регулирования.	тического регулиро-	вания.	
				вания.		
	Владеть основными мето-	Правильные от-	Слабо владеет мето-	Слабо владеет мето-	. Владеет методикой	
	дами и средствами сбора	веты на вопросы	дикой проверки	дикой проверки	проверки настроек	
	информации о состоянии	№21-38 к экза-	настроек регулирую-	настроек регулиру-	регулирующих бло-	
	технических средств	мену и защита	щих блоков, опреде-	ющих блоков, опре-	ков, определения	
	электро- и гидросистем и	курсовой работы	ления статической ха-	деления статической	статической харак-	
	навыками устранения вы-		рактеристики испол-	характеристики ис-	теристики исполни-	
	явленных недостатков в		нительного механиз-	полнительного ме-	тельного механизма,	
	работе оборудования. (Н-		ма, навыками выпол-	ханизма, навыками	навыками выполне-	
	2).		нения принципиаль-	выполнения прин-	ния принципиальных	
			ных схем с использо-	ципиальных схем с	схем с использова-	
			ванием пневматиче-	использованием	нием пневматиче-	
			ских, электрических и	пневматических,	ских, электрических	
			гидравлических эле-	электрических и	и гидравлических	
			ментов	гидравлических эле-	элементов	
				ментов		

3 Типовые контрольные задания для проведения промежуточной аттестации.

- а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-3:
 - 1. Классификация первичных преобразователей, предназначенных для измерения технологических параметров.
 - 2. Классификация преобразователей с унифицированным выходным сигналом.
 - 3. Классификация исполнительных механизмов.
 - 4. Классификация регулирующих органов.
 - 5. Классификация регуляторов.
 - 6. Индуктивные первичные преобразователи. Принцип действия, характеристики.
 - 7. Емкостные первичные преобразователи. Принцип действия, характеристики.
 - 8. Тензометрические первичные преобразователи. Принцип действия, характеристики.
 - 9. Электромагнитные реле постоянного и переменного тока. Принцип действия, характеристики.
 - 10. Контакторы, автоматические выключатели. Принцип действия, характеристики.
 - 11. Контактные и бесконтактные пусковые устройства. Принцип действия, характеристики.
 - 12. Операционные усилители и функциональные узлы, реализованные на их основе. Принцип действия, характеристики.
 - 13. Корректирующие функциональные блоки аналоговых регуляторов. Принцип действия, характеристики.
 - 14. Компараторы. Принцип действия, характеристики.
 - 15. Преобразователь ток-напряжение. Принцип действия, характеристики.
 - 16. Преобразователь напряжение -ток. Принцип действия, характеристики.
 - 17. Элементы пневмоавтоматики. Принцип действия, характеристики.
 - 18. Стабилизаторы давления. Принцип действия, характеристики.
 - 19. Стабилизаторы расхода. Принцип действия, характеристики.
 - 20. Пневматические усилители. Принцип действия, характеристики.
 - 21. Пневмоэлектрические и электропневматические дискретные преобразователи. Принцип действия, характеристики.
 - 22. Позиционный регулятор ПР1.5. Принцип действия, характеристики.
 - 23. Пропорциональный регулятор ПР2.8. Принцип действия, характеристики.
 - 24. Пропорционально-интегральный регулятор ПР3.31. Принцип действия, характеристики.
 - 25. Вторичный пневматический прибор ПВ10. Принцип действия, характеристики.
 - 26. Аналоговые регуляторы комплексов КАСКАД, АКЭСР. Принцип действия, характеристики.
 - 27. Релейные (импульсные) регуляторы комплексов КАСКАД, АКЭСР. Принцип действия, характеристики.
 - 28. Функциональные блоки комплекса АКЭСР. Принцип действия, характеристики.
 - 29. Цифровой регулятор МИНИТЕРМ. Принцип действия, характеристики.
 - 30. Программируемый контроллер Р-130. Принцип действия, характеристики.
 - 31. Позиционный регулятор ПР1.5. Методики выбора, поверки, настройки.
 - 32. Пропорциональный регулятор ПР2.8. Методики выбора, поверки, настройки.
 - 33. Пропорционально-интегральный регулятор ПР3.31. Методики выбора, поверки, настройки.
 - 34. Вторичный пневматический прибор ПВ10. Аналоговые регуляторы комплексов КАСКАД, АКЭСР. Методики выбора, поверки, настройки.
 - 35. Релейные (импульсные) регуляторы комплексов КАСКАД, АКЭСР. Методики выбора, поверки, настройки.
 - 36. Функциональные блоки комплекса АКЭСР. Методики выбора, поверки, настройки.

- 37. Цифровой регулятор МИНИТЕРМ. Методики выбора, поверки, настройки.
- 38. Программируемый контроллер Р-130. Методики выбора, поверки, настройки.
- 39. Пневматические исполнительные механизмы. Принцип действия, характеристики.
- 40. Электрические исполнительные механизмы. Принцип действия, характеристики.
- 41. Стандартные дроссельные регулирующие органы. Принцип действия, характеристики.
- 42. Дозирующие регулирующие органы. Принцип действия, характеристики.

К экзамену допускаются студенты, выполнившие все формы текущего контроля. При сдаче экзамена, студент получает два вопроса из перечня, приведенного выше.

Время подготовки студента к устному ответу на вопросы - до 45 мин.

4. Курсовой проект

Содержание курсового проекта:

Подробный расчет с пояснениями. Рисунки рассчитанных устройств и графики их характеристик. Тема №1 для курсового проекта: «Расчет электромагнитного исполнительного механизма».

Таблица 1- Варианты заданий для темы курсового проекта №1

Вариант	Q, H	L, м	y, ⁰ C	τ	U, B	$t_{\text{окр.макс}}$ 0 C
1	240	0,005	70	0,1	24	20
2	300	0,004	70	1	36	25
3	200	0,006	65	0,3	24	25
4	120	0,01	70	1	24	30
5	100	0,012	70	1	48	30
6	400	0,003	70	0,2	36	30
7	100	0,008	65	1	24	25
8	200	0,004	70	0,5	24	30
9	300	0,004	65	0,1	36	30
10	400	0,005	65	0,3	48	25

Тема № 2 для курсового проекта: «Расчет дифференциального преобразователя».

Таблица 2 – Варианты заданий для темы курсового проекта №2

N	с см	h см	$\Delta\delta$ mm	$K_{\delta}B/MM$	R _H OM	В Тл	Материал магни-
							топровода
1	3.0	2.0	0.25	50	60	1.0	Э41
2	3.0	2.0	0.30	60	150	1.0	-"-
3	3.0	2.0	0.25	70	100	0.8	-"-
4	2.5	1.5	0.20	70	150	0.8	-"-
5	2.5	2.0	0.30	60	200	1.0	-"-
6	3.0	2.0	0.40	50	150	0.6	-"-
7	2.5	2.5	0.40	70	150	0.6	-"-
8	2.5	2.0	0.30	60	200	0.8	-"-
9	3.0	1.5	0.30	50	200	0.6	_''_
10	2.5	2.0	0.30	70	60	0.6	-"-

Для всех вариантов расчета индуктивных преобразователей использовать частоту переменного тока $f = 50 \, \Gamma \mu$.

5 Методические материалы для определения процедур оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТП СТО СПбГТИ(ТУ) 016-2015. КС УКВД. Порядок проведения зачетов и экзаменов. По дисциплине промежуточная аттестация проводится в форме защиты курсовой работы и экзамена. Шкала оценивания на экзамене балльная («отлично», «хорошо», «удовлетворительно», «неудовлетворительно»).