Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 28.08.2023 12:15:43 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

преподаватель

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный технологический институт (технический университет)» (СПбГТИ(ТУ))

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский

Рабочая программа учебной дисциплины ОБЩАЯ и **НЕОРГАНИЧЕСКАЯ** ХИМИЯ

Специальность

18.02.09 Переработка нефти и газа

Квалификация выпускника

Техник-технолог

Форма обучения

очная

Центр среднего профессионального образования

Санкт-Петербург

2021

Рабочая	программа	учебной	дисциплины	разработана	на	основе	Федерального
государс	твенного обра	азовательно	ого стандарта (д	цалее - ФГОС)	сред	него проф	рессионального
образова	ния (далее СГ	ІО) по спец	иальности 18.0	2.09 «Перерабо	тка н	ефти и га	3a».
Програм	му составил:					_	
неорган	оцент кафедр ической СПбГТИ(ТУ)	ы —			4.B.3	инченко	
Рабочая	программа уч	ебной дисц	иплины обсужд	цена и одобрена	на з	аседании	цикловой
методиче	еской комисси	ии математи	ического и есте	ственнонаучног	го ци	кла дисци	плин,
протокол	ı № 1 от 31.08	.2016					
Председ	цатель циклов	ой					
методич	неской комисс	сии ст.			А.Д.І	Бабаев	

СОГЛАСОВАНО

И.О. директора Центра	 А.Ю.Постнов
СПО	
Директор библиотеки	 Т.Н.Старостенко

СОДЕРЖАНИЕ

				стр
1.	ПАСПОРТ РАБОЧЕЙ	ПРОГРАММЫ	УЧЕБНОЙ	4
2.	ДИСЦИПЛИНЫ СТРУКТУРА И СОДЕРЖАНИЕ		учебной	8
3	ДИСЦИПЛИНЫ УСЛОВИЯ РЕАЛИЗАЦИИ	УЧЕБНОЙ ДИСЦИП.	ПИНЫ	15
	КОНТРОЛЬ И ОЦЕНКА	РЕЗУЛЬТАТОВ	ОСВОЕНИЯ	17
4.	УЧЕБНОЙ ДИСЦИПЛИНЫ	FE39JIDTATUB	ОСВОЕПИЯ	1/
	ПРИЛОЖЕНИЕ А			18
	ФОНД ОЦЕНОЧНЫХ СРЕДСТІ	3		

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ <u>Общая</u>

и неорганическая химия

1.1. Область применения рабочей программы

Рабочая программа учебной дисциплины является частью основной профессиональной образовательной программы подготовки специалистов среднего звена среднего профессионального образования (ППССЗ, СПО) в соответствии с ФГОС СПО по специальности 18.02.09 «Переработка нефти и газа»

1.2 Место учебной дисциплины в структуре основной профессиональной образовательной программы: дисциплина входит в математический и общий естественнонаучный цикл дисциплин ППССЗ базовой подготовки.

В методическом плане дисциплина опирается на элементы компетенций, формируемые при изучении дисциплины «Аналитическая химия», знания и умения, усвоенные при получении среднего образования

Полученные в процессе изучения дисциплины «Общая и неорганическая химия» знания и умения могут быть использованы при изучении дисциплин «Экологические основы природопользования», «Теоретические основы химической технологии», «Физическая и коллоидная химия», профессиональных модулей «Эксплуатация технологического оборудования», «Ведение технологического процесса на установках I и II категорий», «Выполнение работ по одной или нескольким профессиям рабочих, должностям служащих», при прохождении производственной и преддипломной практики и при выполнении выпускной квалификационной работы.

1.3 Цели и задачи учебной дисциплины - требования к результатам освоения дисциплины:

Изучение дисциплины "Общая и неорганическая химия" преследует следующие цели:

- Формирования у студентов целостного современного естественнонаучного мировоззрения, химического мышления; создания фундаментальных знаний теоретической химии и химии элементов и практически важных химических свойств элементов и их соединений.
- Изложения основных законов, теорий, принципов и правил теоретических основ химии (общей химии), применимых ко всем химическим дисциплинам, и обучения студентов их использованию на обширном материале неорганической химии.
- Ознакомления со свойствами химических элементов и некоторых наиболее употребляемых соединений. Это создаст фундамент химического образования для обучения студентов другим химическим (аналитическая химия, органическая химия, физическая и коллоидная химия) и специальным дисциплинам.
 - По мере преподавания студентам дисциплины "Общая и неорганическая химия" будут решены следующие задачи:
- Описание на основе Периодического закона Д.И. Менделеева взаимосвязи свойств химических элементов и их соединений.
- Выявление зависимости состава, структуры, реакционной способности соединений от электронного строения атомов.
- Описание закономерностей, определяющих направление и скорость протекания химической реакции.
- Теоретическое и практическое ознакомление с химическими свойствами простых веществ и соединений, с условиями проведения химических реакций.

В результате освоения дисциплины обучающийся должен уметь:

- давать характеристику химических элементов в соответствии с их положением в периодической системе химических элементов Д.И.Менделеева;
- использовать лабораторную посуду и оборудование;

- находить молекулярную формулу вещества;
- применять на практике правила безопасной работы в химической лаборатории;
- применять основные законы химии для решения задач в области профессиональной деятельности;
- проводить качественные реакции на неорганические вещества и ионы, отдельные классы органических соединений;
- составлять уравнения реакций, проводить расчеты по химическим формулам и уравнениям реакции;
- составлять электронно-ионный баланс окислительно-восстановительных процессов;
- доказывать с помощью химических реакций химические свойства веществ неорганической природы.
- составлять формулы комплексных соединений и давать им названия.

В результате освоения дисциплины обучающийся должен знать:

- гидролиз солей, электролиз расплавов и растворов (солей и щелочей);
- диссоциацию электролитов в водных растворах сильные и слабые электролиты;
- классификацию химических реакций и закономерности их проведения;
- обратимые и необратимые химические реакции, химическое равновесие, смещение химического равновесия под действием различных факторов;
- общую характеристику химических элементов в связи с их положением в периодической системе;
- окислительно-восстановительные реакции, реакции ионного обмена;
- основные понятия и законы химии
- основы электрохимии;
- периодический закон и периодическую системы химических элементов Д.И. Менделеева, закономерности изменения химических свойств элементов и их соединений по периодам и группам;
- тепловой эффект химических реакций, термохимические уравнения;
- типы и свойства химических связей (ковалентной, ионной, металлической, водородной);
- формы существования химических элементов, современные представления о строении атомов;
- характерные химические свойства неорганических веществ различных классов;
- основы теории протекания химических процессов.
- В результате освоения учебной дисциплины обучающийся должен овладеть следующими общими и профессиональными компетенциями:
- ОК 1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес.
- ОК 2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество.
- ОК 3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность.
- ОК 4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития.
- ОК 5. Использовать информационно-коммуникационные технологии в профессиональной деятельности.
- ОК 6. Работать в коллективе и команде, эффективно общаться с коллегами, руководством, потребителями.
- ОК 7. Брать на себя ответственность за работу членов команды (подчиненных), результат выполнения заданий.
- ОК 8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации.

- ОК 9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности.
- ПК1.1 Контролировать эффективность работы оборудования.
- ПК1.2 Обеспечивать безопасную эксплуатацию оборудования и коммуникаций при ведении технологического процесса.
- ПК1.3 Подготавливать оборудование к проведению ремонтных работ различного характера.
- ПК2.1 Контролировать и регулировать технологический режим с
- использованием средств автоматизации и результатов анализов.
- ПК 2.2 Контролировать качество сырья, получаемых продуктов.
- ПК 2.3 Контролировать расход сырья, продукции, реагентов, катализаторов, топливно-энергетических ресурсов.
- ПК 3.1 Анализировать причины отказа, повреждения технических устройств и принимать меры по их устранению.
- ПК 3.2 Анализировать причины отклонения от режима
- технологического процесса и принимать меры по их устранению.
- ПКЗ.З Разрабатывать меры по предупреждению инцидентов на технологическом блоке.
- ПК 4.1 Организовать работу коллектива и поддерживать
- профессиональные отношения со смежными подразделениями.
- ПК 4.2 Обеспечивать выполнение производственного задания по объему производства и качеству продукта.
- ПК 4.3 Обеспечивать соблюдение правил охраны труда, промышленной, пожарной и экологической безопасности.

1.4Количество часов на освоение программы дисциплины:

максимальной учебной нагрузки обучающегося 136 часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося 96 часов; самостоятельной работы обучающегося 40 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ Общая и неорганическая химия

3.1 Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	136
Обязательная аудиторная учебная нагрузка (всего)	96
Теоретическое обучение	32
лабораторные работы	32
практические занятия:	32
В том числе	
контрольные работы	4
Самостоятельная работа обучающегося (всего)	40
в том числе:	
домашняя работа (упражнения, решение задач)	20
работа с учебником, конспектирование	20
Итоговая аттестация в форме экзам	ена

2.2. Тематический план и содержание учебной дисциплины Общая и неорганическая химия

Наименование разделов и тем	Содержание учебного материала, лабораторные и практические работы, самостоятельная работа	Объем часов	Уровень * усвоения
1	2	3	4
Раздел 1.		96	
Теоретические			
основы			
неорганической			
YUMUU .		_	
Тема 1.1.	Содержание учебного материала	2	1,2
Основы атомно-			
молекулярного	Основные химические понятия и стехиометрические законы, законы атомно-молекулярного учения		
учения	2 Классы неорганических соединений.		
	3 Современная номенклатура неорганических соединений.		
	Лабораторные занятия	0	
	Практические занятия	0	
	Контрольные работы	0	
	Самостоятельная работа: Проработка теоретического материала по теме	2	
Тема 1.2.	Содержание учебного материала	4	2,3
Периодический	1 Экспериментальные основы современной модели строения атома.		
закон	2 Периодический закон Д.И.Менделеева и его современная интерпретация.		
Д. И. Менделеева и строение атома	3 Структура Периодической системы.		
стросние атома	4 Периодические свойства соединений: состав, строение, кислотно-основные и окислительно-вос-		
	становительные свойства.		
	Лабораторные занятия	0	
	Практические занятия:	6	
	Строение атома. Периодические свойства.	6	
	Контрольная работа на тему	0	
	Самостоятельная работа: Проработка теоретического материала по теме	4	3

Тема 1.3.	Содержание учебного материала	2	2
Химическая связь	1 Ковалентная, ионная и металлическая связь.		
	2 Полярные и неполярные связи.		
	3 Метод валентных связей (MBC).		
	4 Механизмы образования химической связи.		
	5 Теория отталкивания <i>a</i> - связывающих и неподелённых электронных пар.		
	6 Межмолекулярные взаимодействия.		
	Лабораторные занятия	0	
	Практические занятия:	6	
	Химическая связь		
	Контрольные работы	0	
70 1 4	Самостоятельная работа: Проработка теоретического материала по теме	4	1.2.2
Тема 1.4.	Содержание учебного материала	2	1,2,3
Закономерности	1 Понятие о термодинамической системе. Функции состояния.		
протекания	2 Термохимия. Эндо- и экзотермические реакции.		
химических	3 Закон Гесса. Расчеты тепловых эффектов реакций.		
реакций	4 Энергия Гиббса. Изменение энергии Гиббса как термодинамический критерий возможности		
	протекания процесса.		
	5 Кинетика химических реакций. Понятие о механизме.		
	6 Скорость химической реакции. Факторы, влияющие на скорость химической реакции.		
	7 Энергия активации. Уравнение Аррениуса.		
	8 Катализ и катализаторы.		
	9		
	Смещение химического равновесия при изменении внешних условий, принцип Ле Шателье - Брауна.		
	Лабораторные занятия	0	2,3
	Практические занятия	4	
	Расчеты тепловых эффектов реакций. Смещение химического равновесия при изменении внешних		
	условий, принцип Ле Шателье - Брауна.		
	Контрольные работы	0	
	Самостоятельная работа: Проработка теоретического материала по теме	2	

Тема 1.5. Растворы	Содержание учебного материала	6	2,3
электролитов и	Растворы как гомогенные системы. Гидраты и сольваты.		
равновесия в	Электролитическая диссоциация. Энергия гидратации ионов. Сильные и слабые электролиты.		
растворах	Теория электролитической диссоциации Аррениуса.		
	Теории кислот и оснований Бренстеда-Лоури, Льюиса.		
	Расчёт концентраций ионов в растворах сильных и слабых электролитов.		
	Ионные реакции в растворах. Смещение ионных равновесий.		
	Гидролиз солей. Константа гидролиза. Особые случаи гидролиза.		
	Гетерогенные равновесия. Произведение растворимости.		
	Перевод в раствор малорастворимых солей.		
	Лабораторные занятия:	8	3
	Правила работы в химической лаборатории. Техника безопасности.		
	Ионные реакции в растворах. Гидролиз солей. Гетерогенные равновесия. Перевод в раствор мало-		
	растворимых солей.		
	Практические занятия	2	
	Ионные реакции в растворах.		
	Расчёт концентраций ионов в растворах сильных и слабых электролитов.		
	Контрольная работа:	2	
	Ионные реакции.		
	Расчёт концентраций ионов в растворах сильных и слабых электролитов.	0	
Тема 1.6.	Самостоятельная работа: Проработка теоретического материала по теме	8 2	1,2,3
Окислительно -	Содержание учебного материала Понятие об окислителях и восстановителях. Окислительно-восстановительные реакции и их типы.	Z	1,2,3
	Составление уравнений окислительно-восстановительных реакций, нахождение стехиометрических		
процессы	коэффициентов с помощью ионно-электронных схем и электронного баланса.		
	Стандартный окислительно-восстановительный потенциал. Окислительно - восстановительное		
	равновесие в растворах. Уравнение Нернста.		
	Электролиз растворов и расплавов.		
	Электрохимическая коррозия металлов, методы защиты от нее.		
	Лабораторные занятия:	0	3
	Окислительно - восстановительные свойства неорганических соединений.	8	

(

	Практические занятия	4	2,3
	Составление уравнений окислительно-восстановительных реакций, нахождение стехиометрических		2,3
	коэффициентов с помощью ионно-электронных схем и электронного баланса.		
	Контрольная работа:	2	
	Составление уравнений окислительно-восстановительных реакций.	2	
	Самостоятельная работа: Проработка теоретического материала по теме	8	
Тема 1.7.	Содержание учебного материала	2	1
		2	1
Координационные			
соединения	Центральный атом (ион) -комплексообразователь, лиганды. Внутренняя и внешняя сферы		
	координационного соединения. Координационное число. Координационная ёмкость (дентатность) лигандов.		
	Основные типы координационных соединений: аквакомплексы, ацидокомплексы, гидроксокомплексы,		
	аминокомплексы.		
	Номенклатура координационных соединений. Геометрическая конфигурация координационных		
	соединений с позиций МВС.		
	Реакции комплексообразования в растворах. Равновесия в растворах координационных соединений.		
	г сакции комплексообразования в растворах, г авиовсеня в растворах координационных соединении.	4	2,3
	Лабораторные занятия:	т	2,3
	Реакции комплексообразования в растворах. Равновесия в растворах координационных соединений.		
	Реакции с участием координационных соединений.		
	Практические занятия	0	
	Контрольные работы	0	
	Самостоятельная работа: Проработка теоретического материала по теме	2	
Раздел 2		40	
Химия элементов			
Тема 2.1. Химия s- и	Содержание учебного материала	10	2,3
р- элементов	Простые вещества и соединения элементов I -II группы Периодической Системы Д.И. Менделеева		
	Простые вещества и соединения элементов III-IV группы Периодической Системы Д.И. Менделеева		
	Простые вещества и соединения элементов V-VI группы Периодической Системы Д.И. Менделеева		

	Простые вещества и соединения элементов VII-VIII группы Периодической Системы Д.И. Менделеева		
	Лабораторные занятия:	4	3
	Химия s- и p- элементов (основных представителей).		
	Практические занятия:	6	2,3
	Простые вещества и соединения элементов III-IV группы Периодической Системы Д.И. Менделеева.		
I	Простые вещества и соединения элементов V-VI группы Периодической Системы Д.И. Менделеева.		
	Простые вещества и соединения элементов VII-VIII группы Периодической Системы Д.И. Менделеева.		
	Контрольная работа	0	
	Самостоятельная работа: Проработка теоретического материала по теме.	5	
Тема 2.2. Обзор	Содержание учебного материала	2	1,2
химии <i>d</i> -	d — элементы I группы (I B).		
элементов	d— элементы II группы (II B).		
	d — элементы VI группы (VI B).		
	d- элементы VII группы (VII B).		
	d- элементы VIII группы (VIII B).		
	Лабораторные занятия:	8	3
	химия d - элементов (основных представителей)	o	
	Практические занятия	0	
	Контрольная работа	0	
	Самостоятельная работа: Проработка теоретического материала по теме	5	
	Итого:	136	

- 1. ознакомительный (узнавание ранее изученных объектов, свойств).
- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством).
- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

^{*} Для характеристики уровня освоения учебного материала используются следующие обозначения:

2.3 Практические занятия

Тема дисциплины		Объем, акад. часы	Форма проведения занятия
1.2	Строение атома. Периодические свойства.	6	Слайд- презентация
1.3	Химическая связь.	6	Слайд- презентация
1.4	Расчеты тепловых эффектов реакций. Смещение химического равновесия при изменении внешних условий, принцип Ле Шателье - Брауна.		Решение ситуационной задачи
1.5	Ионные реакции в растворах. Расчёт концентраций ионов в растворах сильных и слабых электролитов.	2	Решение ситуационной задачи
1.6	Составление уравнений окислительновосстановительных реакций, нахождение стехиометрических коэффициентов с помощью ионно-электронных схем и электронного баланса.	4	Решение ситуационной задачи
2.2	Простые вещества и соединения элементов III-VIII групп Периодической Системы Д.И. Менделеева		Слайд- презентация

2.4 Самостоятельная работа обучающихся

Тема дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
1.1	Проработка теоретического материала по	2	Устный опрос
1.2	ТемеПроработка теоретического материала по теме	4	Устный опрос
1.3	Проработка теоретического материала по теме	4	Тестирование
1.4	Проработка теоретического материала по теме	2	Тестирование
1.5	Проработка теоретического материала по теме	8	Тестирование
1.6	Проработка теоретического материала по теме	8	Устный опрос
1.7	Проработка теоретического материала по теме	2	Устный опрос
2.1	Проработка теоретического материала по теме	5	Тестирование
2.2	Проработка теоретического материала по теме	5	Тестирование

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация программы учебной дисциплины требует наличия учебного кабинета химических дисциплин и лабораторного зала.

Большая химическая аудитория (кабинет химических дисциплин) с демонстрационным мультимедийным комплексом (ноутбук ToshibaL40, мультимедийный проектор BenqMP 511, экран), препаративным столом и системой вентиляции (для показа демонстрационного эксперимента). В аудитории имеются необходимые учебно-наглядные пособия - Периодическая таблица Д. И. Менделеева, ряд напряжений металлов, таблица растворимости солей, коллекция реактивов и приборов для демонстрации химических реакций во время лекций.

Учебные аудитории, оснащенные специализированной учебной мебелью и техническими средствами обучения, для проведения семинарских и практических занятий. Три лабораторных зала (лабораторный комплекс), общей площадью 300 кв.м. Локальная компьютерная сеть с выходом в интернет, с принтерами, сканерами.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, дополнительной литературы, интернетресурсов.

Основные источники:

1. Общая и неорганическая химия : методические указания для студентов среднего профессионального образования всех форм обучения / [А. Н. Беляев и др. ; под общ. ред. А. Н. Беляева] ; СПбГТИ(ТУ). Центр среднего проф. образования. - Электрон. текстовые дан. - СПб. : [б. и.], 2015. - 61 с.

Дополнительные источники:

- 1. Глинка, Н.Л. Общая химия /Н.Л. Глинка. М.: Юрайт, 2010 886 с.
- 2. Леенсон, И.А. Как и почему происходят химические реакции. Элементы химической термодинамики и кинетики: учебн. пос. /И.А. Леенсон. Долгопрудный: Интеллект, 2010. 223с.
- 3. Батаева, Е.В. Задачи и упражнения по общей химии. /Е.В. Батаева. М.: Академия, 2010. 223c

Вспомогательные источники:

1.Ахметов, Н.С. Общая и неорганическая химия: Учебник для химикотехнологических спец, вузов. /Н.С. Ахметов. - 7-е М.: Высш. шк., 2008. - 743с.

Интернет - ресурсы, электронные учебные пособия и учебники:

- 1.Электронно-библиотечная сеть «Библиотех» http://lti-gti.bibliotech.ru/
- 2.Электронная библиотечная система «Лань»- http://e.lanbook.com

4.КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий, тестирования, а также выполнения обучающимися индивидуальных заданий.

Текущий контроль знаний и оценка сформированности компетенций осуществляется при использовании Фонда оценочных средств (ФОС) текущего и промежуточного контроля. ФОС представлен в приложении A.

ПРИЛОЖЕНИЕ А

Фонд оценочных средств

по учебной дисциплине

Общая и неорганическая химия

1. Общие положения

Фонд оценочных средств (ФОС) предназначен для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины Общей и неорганической химии.

ФОС включает контрольные материалы для проведения текущего контроля и промежуточной аттестации в форме экзамена.

2. Результаты освоения дисциплины, подлежащие проверке

Результаты обучения	Основные показатели оценки
(освоенные умения, усвоенные знания)	результатов
У 1. Доказывать с помощью химических	- запись выражений для констант
реакций химические свойства веществ	равновесия кислотно-основных реакций,
неорганической природы.	реакций осаждения-растворения, реакций
	комплексообразования;
У 2. Составлять уравнения реакций,	- выполнение расчетов для проведения
проводить расчеты по химическим	лабораторных работ;
формулам и уравнениям реакции.	- составление протоколов лабораторных
	работ;
У 3. Использовать лабораторную посуду и	- выполнение расчетов масс и объемов
оборудование.	реактивов;
У 4. Находить молекулярную формулу	- решение задач;
вещества.	
У 5. Применять на практике правила	- составление протоколов лабораторных
безопасной работы в химической	работ;
лаборатории.	
3 1. Основы теории протекания	- знание закона постоянства масс; закона
химических процессов.	действующих масс;
3 2. Строение и реакционные способности	- владение принципами классификации
неорганических соединений.	неорганических веществ;
3 3. Аппаратура и техника выполнения	- владение знаниями об обеспечении
анализов.	техник лабораторного эксперимента и
	выполнения химического анализа;
3 4. Типы и свойства химических связей	- решение задач;

(ковалентной, ионной, металлической, водородной).	
3 5. Формы существования химических	- выполнение расчетов, основанных на
элементов, современные представления о	знании фундаментальных законов
строении атомов.	постоянства состава вещества и
	определения единицы количества
	вещества.

3. Распределение оценивания результатов обучения по видам контроля

П	Виды аттестации				
Наименование элемента умений или знаний	Текущий контроль	Промежуточная аттестация			
У 1. Доказывать с помощью химических реакций химические свойства веществ неорганической природы.	Выполнение контрольной работы, устный опрос	Экзамен			
У 2. Составлять уравнения реакций, проводить расчеты по химическим формулам и уравнениям реакции.	Выполнение контрольной работы, устный опрос	Экзамен			
У 3. Использовать лабораторную посуду и оборудование.	Выполнение лабораторной работы	Экзамен			
У 4. Находить молекулярную формулу вещества.	Выполнение контрольной работы, устный опрос	Экзамен			
У 5. Применять на практике правила безопасной работы в химической лаборатории.	Выполнение лабораторной работы	Экзамен			
3 1. Основы теории протекания химических процессов.	Выполнение контрольной работы, лабораторной работы, устный опрос	Экзамен			
3 2. Строение и реакционные способности неорганических соединений.	Выполнение контрольной работы, лабораторной работы	Экзамен			
3 3. Аппаратура и техника выполнения анализов.	Выполнение лабораторной работы	Экзамен			
3 4. Типы и свойства химических связей (ковалентной, ионной, металлической, водородной).	Выполнение контрольной работы, устный опрос	Экзамен			
3 5. Формы существования химических элементов, современные представления о строении атомов.	Выполнение контрольной работы, устный опрос	Экзамен			

4. Распределение типов контрольных заданий по элементам знаний и умений текущего контроля.

Содержание учебного	Тип контрольного задания									
материала по программе УД	У1	У2	У3	У4	У5	31	32	33	34	35
Раздел 1. Теоретические основы неорганической химии										
Тема 1.1. Основы атомно- молекулярного учения				У			У			У
Тема 1.2. Периодический закон Д. И. Менделеева и строение атома				У			У			У
Тема 1.3 Химическая связь		К							У	КР
Тема 1.4. Закономерности протекания химических реакций										
Тема 1.5. Растворы электролитов и равновесия в растворах	У	У	ЛР		ЛР	ЛР	У	ЛР		
Тема 1.6. Окислительновосстановительные процессы	У	КР	ЛР		ЛР	У	КР	ЛР		
Тема 1.7. Координационные соединения			ЛР			ЛР		ЛР		
Раздел 2. Химия элементов										
Тема 2.1. Химия s- и p- элементов	У	У								У
Тема 2.2. Обзор химии d- элементов										

Условные обозначения:

ЛР – лабораторная работа

КР – контрольная работа

У – устный опрос

5. Распределение типов и количества контрольных заданий по элементам знаний и умений, контролируемых на промежуточной аттестации.

Содержание учебного	Тип контрольного задания									
материала по программе УД	У1	У2	У3	У4	У5	31	32	33	34	35
Раздел 1. Теоретические основы неорганической химии										
Тема 1.1. Основы атомно- молекулярного учения				Э			Э			Э
Тема 1.2. Периодический закон Д. И. Менделеева и строение атома				Э			Э			Э
Тема 1.3 Химическая связь									Э	
Тема 1.4. Закономерности протекания химических реакций										
Тема 1.5. Растворы электролитов и равновесия в растворах	Э	Э	Э		Э	Э	Э	Э		
Тема 1.6. Окислительновосстановительные процессы	Э		Э		Э	Э		Э		
Тема 1.7. Координационные соединения			Э			Э		Э		
Раздел 2. Химия элементов										
Тема 2.1. Химия s- и p- элементов	Э	Э								Э
Тема 2.2. Обзор химии d- элементов				Э						

Условные обозначения:

Э – экзамен

- 6. Структура контрольного задания
- 6.1. Практическое занятие №1 «Основы атомно-молекулярного учения»
- 6.1.1. Содержание устного опроса №1

Вариант 1

- 1. Могут ли в состав какой-либо молекулы входить следующие массы кислорода и серы:
- а) 8 а.е.м.; б) 16 а.е.м.; в)64 а.е.м.; г) 24 а.е.м.? Дайте объяснения.
- 2. Водород соединяется с серой в массовых соотношениях 1:16. Пользуясь относительными атомными массами этих элементов, выведите химическую формулу сероводорода.
- 3. Вычислите относительную молекулярную массу а) H_2SO_4 ; б) $CuSO_4 \bullet 5H_2O$.
- 4. К каким классам неорганических соединений относятся NaOH, SO₂, Na₃PO₄, HCl?
- 5. Какой ряд содержит только кислотные оксиды:
- 1) Na₂O, CaO, CO₃; 2) SO₃, CuO, CrO₃; 3) Mn₂O₇, CuO, CrO₃; 4) SO₃, CO₂, P₂O₅?

Вариант 2

- 1. Вычислите массовые доли элементов в оксиде железа Fe₂O₃.
- 2. Зная относительные атомные массы элементов, составьте химическую формулу сульфата меди, если массовые отношения в нем меди, серы и кислорода соответственно равны 2:1:2.
- 3. Вычислите относительную молекулярную массу а) H₃PO₄; б) NiCl₂•6H₂O.
- 4. К каким классам неорганических веществ относятся Ca(OH)₂, H₂SeO₄, CuO, CrO₃?
- 5. Какое из веществ при растворении в воде образует кислоту:
- 1) NaCl; 2) CaO; 3) SO₃; 4) NH₃?

Вариант 3

- 1. Можно ли выразить массы сульфида железа в следующих числах (а.е.м.):
- а) 44; б) 176; в) 150; г) 264? Почему?
- 2. Вычислите массовые доли элементов в сульфате меди CuSO₄.
- 3. Из приведенных оксидов: SO_3 , CrO, P_2O_5 , SiO_2 , Cl_2O_7 , WO_3 , Mn_2O_7 основными являются (перечислите формулы).
- 4. Вычислите относительную молекулярную массу H₂SiO₃.
- 5. Из нижеперечисленных названий выпишите отдельно названия простых и сложных веществ: кислород, вода, ртуть, оксид меди, железо, водород, сульфид железа, оксид ртути.

6.1.2. Время на выполнение: 20 минут

6.1.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 4. Находить молекулярную формулу	- решение задач;	

вещества.		
3 2. Строение и реакционные	- владение принципами	
способности неорганических	классификации неорганических	
соединений.	веществ;	
	- выполнение расчетов, основанных на	
3 5. Формы существования химических	знании фундаментальных законов	
элементов, современные представления о	постоянства состава вещества и	
строении атомов.	определения единицы количества	
	вещества.	

За верное решение задачи выставляется положительная оценка — 1 балл. За неверное решение задачи выставляется отрицательная оценка — 0 баллов.

6.2. Практическое занятие №2 «Периодический закон Д. И. Менделеева и строение атома»

6.2.1. Содержание устного опроса №2

Вариант 1

- 1. Определите валентность элементов по формулам: HgO, K_2S , B_2O_3 , ZnO, MnO₂, NiO, Cu_2O , SnO_2 , Ni_2O_3 , SO_3 , SO_2 , As_2O_5 , Cl_2O_7 .
- 2. Даны символы элементов и указана их валентность. Составьте соответствующие химические формулы:

P^{III}H, Mn^{VII}O, Fe^{II}O, B^{III}O, HS^{II}, N^{IV}O, Cr^{III}Cl^I, C^{IV}O, C^{IV}H.

- 3. Пользуясь таблицей постоянных и переменных степеней окисления некоторых элементов, составьте химические формулы соединений элементов: ZnO, BO, BeO, CoO, CoO, PbO, PbO, NiO, NiO.
- 4. Вычислите относительную молекулярную массу оксида железа(III).
- 5. Определите массовую долю элементов в оксиде меди(I).

Вариант 2

- 1. Определите валентность элементов по формулам: HgO, K_2S , B_2O_3 , ZnO, SnO_2 , Ni_2O_3 , SO_3 , SO_2 , As_2O_5 , Cl_2O_7 .
- 2. Даны символы элементов и указана их валентность. Составьте соответствующие химические формулы:

Li^IO, Ba^{II}O, P^VO, Sn^{IV}O, K^IO, HS^{II}, N^{IV}O, Cr^{III}Cl^I, C^{IV}O, C^{IV}H.

- 3. Пользуясь таблицей постоянных и переменных степеней окисления некоторых элементов, составьте химические формулы соединений элементов: NaO, BO, BeO, CoO, CoO, PbO, PbO, NiO, NiO.
- 4. Вычислите относительную молекулярную массу оксида фосфора(V).
- 5. Определите массовую долю элементов в оксиде меди(II).

Вариант 3

1. Определите валентность элементов по формулам: MnO₂, NiO, Cu₂O, SnO₂, Ni₂O₃, SO₃,

 SO_2 , As_2O_5 , Cl_2O_7 .

- 2. Даны символы элементов и указана их валентность. Составьте соответствующие химические формулы:
- Li^IO, Ba^{II}O, P^VO, Sn^{IV}O, K^IO, P^{III}H, Mn^{VII}O, Fe^{II}O, B^{III}O.
- 3. Пользуясь таблицей постоянных и переменных степеней окисления некоторых элементов, составьте химические формулы соединений элементов: CaO, BO, BeO, CoO, CoO, PbO, PbO, NiO, NiO.
- 4. Вычислите относительную молекулярную массу оксида марганца(VII).
- 5. Определите массовую долю элементов в оксиде кальция.

6.2.2. Время на выполнение: 20 минут

6.2.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 4. Находить молекулярную формулу	***************************************	
вещества.	- решение задач;	
3 2. Строение и реакционные	- владение принципами	
способности неорганических	классификации неорганических	
соединений.	веществ;	
	- выполнение расчетов, основанных на	
3 5. Формы существования химических	знании фундаментальных законов	
элементов, современные представления о	постоянства состава вещества и	
строении атомов.	определения единицы количества	
	вещества.	

За верное решение задачи выставляется положительная оценка — 1 балл. За неверное решение задачи выставляется отрицательная оценка — 0 баллов.

6.3. Практическое занятие №3 «Химическая связь»

6.3.1. Содержание устного опроса №3

Вариант 1

- 1. Атому какого элемента соответствует электронная конфигурация $1s^22s^22p^2$?
- 2. Определите тип химической связи и рассмотрите схемы ее образования в веществах, имеющих формулы Ca и CaF_2 .
- 3. Используя метод валентных связей, напишите структурную формулу СО.
- 4. Применяя правило минимума энергии Клечковского, объясните, почему при заполнении энергетических уровней атома электроны сначала располагаются на 5s-оболочке, а только после этого размещаются на 4d-подуровне?

Вариант 2

1. В какой паре атомов химическая связь имеет наиболее ярко выраженный ионный

характер:

- 1) K—F; 2) O—F; 3) F—F; 4) P—F? Объясните, почему.
- 2. Определите тип химической связи и рассмотрите схемы ее образования в веществах, имеющих формулы Cl₂ и LiF.
- 3. Используя метод валентных связей, напишите структурную формулу CaC₂.
- 4. Применяя правило минимума энергии Клечковского, объясните, почему при заполнении энергетических уровней атома электроны сначала располагаются на 4s-оболочке, а только после этого размещаются на 3d-подуровне?

Вариант 3

- 1. В каком из соединений между атомами образуется ковалентная связь по донорноакцепторному механизму: 1) KCl; 2) NH₄Cl; 3)CCl₄; 4) CO₂? Объясните, почему.
- 2. Определите тип химической связи и рассмотрите схемы ее образования в веществах, имеющих формулы F_2 и OF_2 .
- 3. Используя метод валентных связей, напишите структурную формулу CS₂.
- 4. Применяя правило минимума энергии Клечковского, объясните, почему при заполнении энергетических уровней атома электроны сначала располагаются на 4d-оболочке, а только после этого размещаются на 5p-подуровне.

6.3.2. Время на выполнение: 20 минут

6.3.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
3 2. Строение и реакционные	- владение принципами	
способности неорганических	классификации неорганических	
соединений.	веществ;	
3 4. Типы и свойства химических связей		
(ковалентной, ионной, металлической,	- решение задач;	
водородной).		
	- выполнение расчетов, основанных на	
3 5. Формы существования химических	знании фундаментальных законов	
элементов, современные представления о	постоянства состава вещества и	
строении атомов.	определения единицы количества	
	вещества.	

За верное решение задачи выставляется положительная оценка — 1 балл. За неверное решение задачи выставляется отрицательная оценка — 0 баллов.

6.4. Практическое занятие №4 «Химическая связь»

6.4.1. Содержание контрольной работы №1

Вариант 1

- 1. Октет электронов на внешней электронной оболочке имеет: 1) S; 2) Si; 3) O^{2-} ; 4) Ne⁺.
- 2. Приведите электронную конфигурацию иона Zn^{2+} и его электронно-графическую формулу.
- 3. Дана электронная конфигурация: S_{+16} $1s^22s^22p^63s^23p^6$. Укажите, относится ли она
 - 1) к нейтральному атому или иону;
 - 2) к основному или возбужденному состоянию.
- 4. Запишите электронную конфигурацию внешнего электронного слоя для ионов Mn^{4+} и S^{2-} . Приведите электронно-графические формулы этих ионов.
- 5. Ковалентная связь между атомами имеет место в веществе: 1) $MgCl_2$; 2) H_2S ; 3) CaS; 4) K_3P . Объясните, почему.

Вариант 2

- 1. Электронную конфигурацию благородного газа имеет: 1) Te^{2-} ; 2) Ga^{+} ; 3) Fe^{2+} ; 4) Cr^{3+} .
- 2. Атом какого элемента имеет электронную конфигурацию $1s^22s^22p^63s^23p^64s^1$? Приведите электронно-графическую формулу этого элемента.
- 3. Дана электронная конфигурация: $Sc_{+21} 1s^2 2s^2 2p^6 3s^2 3p^6 3d^1 4s^2$. Укажите, относится ли она 1) к нейтральному атому или иону;
 - 2) к основному или возбужденному состоянию.
- 4. Атому какого элемента соответствует электронная конфигурация $1s^22s^22p^1$?
- 5. Запишите электронную конфигурацию внешнего электронного слоя для ионов Cu^+ и K^+ . Приведите электронно-графические формулы этих ионов.

Вариант 3

- 1. Сколько неспаренных электронов имеет ион Co^{3+} ? Приведите его электроннографическую формулу.
- 2. Атом какого элемента в невозбужденном состоянии имеет электронную конфигурацию $1s^22s^22p^63s^23p^63d^{10}4s^24p^3$?
- 3. Дана электронная конфигурация: $C_{+6} \ 1s^2 2s^1 2p^3$. Укажите, относится ли она
 - 1) к нейтральному атому или иону;
 - 2) к основному или возбужденному состоянию.
- 4. Атому какого элемента соответствует электронная конфигурация $1s^22s^22p^5$?
- 5. Запишите электронную конфигурацию внешнего электронного слоя для ионов Cl^- и Pb^{2+} . Приведите электронно-графические формулы этих ионов.
- 6.4.2. Время на выполнение: 45 минут

6.4.3. Перечень объектов контроля и оценки

1		
Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	

3 2. Строение и реакционные	- владение принципами	
способности неорганических	классификации неорганических	
соединений.	веществ;	
3 4. Типы и свойства химических связей		
(ковалентной, ионной, металлической,	- решение задач;	
водородной).		
	- выполнение расчетов, основанных на	
3 5. Формы существования химических	знании фундаментальных законов	
элементов, современные представления о	постоянства состава вещества и	
строении атомов.	определения единицы количества	
	вещества.	

За верное решение задачи выставляется положительная оценка – 1 балл. За неверное решение задачи выставляется отрицательная оценка – 0 баллов.

6.5. Лабораторное занятие №1 «Растворы электролитов и равновесия в растворах»

6.5.1. Содержание лабораторной работы №1

Правила работы в химической лаборатории. Техника безопасности.

6.5.2. Время на выполнение: 90 минут

6.5.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 3. Использовать лабораторную посуду	- выполнение расчетов масс и объемов	
и оборудование.	реактивов;	
У 5. Применять на практике правила безопасной работы в химической лаборатории.	- составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 3. Аппаратура и техника выполнения анализов.	- владение знаниями об обеспечении техник лабораторного эксперимента и выполнения химического анализа;	

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка – 1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка -0 баллов.

6.6. Лабораторное занятие №2 «Растворы электролитов и равновесия в растворах»

6.6.1. Содержание лабораторной работы №2

Ионные реакции в растворах. Гидролиз солей. Часть 1. Получение и свойства гидроксида алюминия.

6.6.2. Время на выполнение: 90 минут

6.6.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 3. Использовать лабораторную посуду	- выполнение расчетов масс и объемов	
и оборудование.	реактивов;	
У 5. Применять на практике правила безопасной работы в химической лаборатории.	- составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 3. Аппаратура и техника выполнения анализов.	- владение знаниями об обеспечении техник лабораторного эксперимента и выполнения химического анализа;	

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка – 1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка -0 баллов.

6.7. Лабораторное занятие №3 «Растворы электролитов и равновесия в растворах»

6.7.1. Содержание лабораторной работы №3

Ионные реакции в растворах. Гидролиз солей. Часть 2. Гидролиз алюмината натрия. Гидролиз хлорида алюминия.

6.7.2. Время на выполнение: 90 минут

6.7.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	

У 3. Использовать лабораторную посуду	- выполнение расчетов масс и объемов
и оборудование.	реактивов;
У 5. Применять на практике правила безопасной работы в химической лаборатории.	- составление протоколов лабораторных работ;
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;
3 3. Аппаратура и техника выполнения анализов.	- владение знаниями об обеспечении техник лабораторного эксперимента и выполнения химического анализа;

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка – 1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка -0 баллов.

6.8. Лабораторное занятие №4 «Растворы электролитов и равновесия в растворах»

6.8.1. Содержание лабораторной работы №4

Гетерогенные равновесия. Перевод в раствор малорастворимых солей. Растворение оксалата кальция в соляной кислоте.

6.8.2. Время на выполнение: 90 минут

6.8.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 3. Использовать лабораторную посуду	- выполнение расчетов масс и объемов	
и оборудование.	реактивов;	
У 5. Применять на практике правила безопасной работы в химической лаборатории.	- составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 3. Аппаратура и техника выполнения анализов.	- владение знаниями об обеспечении техник лабораторного эксперимента и выполнения химического анализа;	

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка – 1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка — 0 баллов.

6.9. Практическое занятие №5 «Растворы электролитов и равновесия в растворах»

6.9.1. Содержание устного опроса №4

Вариант 1

- 1. Составьте уравнения диссоциации следующих электролитов:
- а) гидроксид калия; б) ортофосфат калия; в) $(NH_4)_2CO_3$.
- 2. Составьте уравнения диссоциации следующих веществ (в возможных случаях):
- a) NaOH; σ 0 ZnO; σ 1 H₂S; σ 3 Al(OH)₃.
- 3. Составьте молекулярные, полные ионные и сокращенные ионные уравнения возможных реакций между веществами:
- а) КОН и MgCl₂; б) NaOH и H₂SO₃; в)Pb(OH)₂ и HCl.
- 4. Определите возможность протекания реакций обмена между водными растворами веществ. Составьте молекулярные, полные ионные и сокращенные ионные уравнения.
- а) сульфат калия и гидроксид бария; б) карбонат натрия и хлорид кальция;
- в) нитрат меди(II) и сульфат железа(II).
- 5. Составьте молекулярные уравнения реакций, сущность которых выражают следующие сокращенные ионные уравнения:
- a) $Zn^{2+} + S^{2-} = ZnS$; 6) $PbCO_3 + 2H^+ = Pb^{2+} + CO_2 + H_2O$; B) $Mg(OH)_2 + H^+ = MgOH^+ + H_2O$.

Вариант 2

- 1. Составьте уравнения диссоциации следующих электролитов:
- а) гидрофосфат натрия; б) (PbOH)NO₃; в) гидроксид кальция.
- 2. Составьте уравнения диссоциации следующих веществ (в возможных случаях):
- a) BaSiO₃; σ σ Cu(NO₃)₂; σ B) H₂S; σ FePO₄.
- 3. Составьте молекулярные, полные ионные и сокращенные ионные уравнения возможных реакций между веществами:
- a) Na₂S и HCl; б) Ba(NO₃)₂ и Na₂SO₄; в)Fe(OH)₃ и HCl.
- 4. Определите возможность протекания реакций обмена между водными растворами веществ. Составьте молекулярные, полные ионные и сокращенные ионные уравнения.
- а) гидроксид натрия и серная кислота; б) сульфит калия и азотная кислота;
- в) нитрат алюминия и хлорид калия.
- 5. Составьте молекулярные, полные ионные и сокращенные ионные уравнения возможных реакций между попарно сливаемыми растворами солей: $AgNO_3$, Na_2CO_3 , $CaCl_2$, K_3PO_4 .

6.9.2. Время на выполнение: 30 минут

6.9.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 1. Доказывать с помощью химических реакций химические свойства веществ неорганической природы.	- запись выражений для констант равновесия кислотно-основных реакций, реакций осаждениярастворения, реакций комплексообразования;	
У 2. Составлять уравнения реакций, проводить расчеты по химическим формулам и уравнениям реакции.	- выполнение расчетов для проведения лабораторных работ; - составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 2. Строение и реакционные способности неорганических соединений.	- владение принципами классификации неорганических веществ;	

За верное решение задачи выставляется положительная оценка — 1 балл. За неверное решение задачи выставляется отрицательная оценка — 0 баллов.

6.10. Лабораторное занятие №5 «Окислительно-восстановительные процессы»

6.10.1. Содержание лабораторной работы №5

Окислительно-восстановительные свойства неорганических соединений. Часть 1. Окисление йодида калия пероксидом водорода.

6.10.2. Время на выполнение: 90 минут

6.10.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 3. Использовать лабораторную посуду	- выполнение расчетов масс и объемов	
и оборудование.	реактивов;	
У 5. Применять на практике правила	- составление протоколов	
безопасной работы в химической	лабораторных работ;	

лаборатории.		
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 3. Аппаратура и техника выполнения анализов.	- владение знаниями об обеспечении техник лабораторного эксперимента и выполнения химического анализа;	

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка – 1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка – 0 баллов.

6.11. Лабораторное занятие №6 «Окислительно-восстановительные процессы»

6.11.1. Содержание лабораторной работы №6

Окислительно-восстановительные свойства неорганических соединений. Часть 2. Восстановление перманганата калия пероксидом водорода.

6.11.2. Время на выполнение: 90 минут

6.11.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	Оценка
У 3. Использовать лабораторную посуду и оборудование.	- выполнение расчетов масс и объемов реактивов;	
У 5. Применять на практике правила безопасной работы в химической лаборатории.	- составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 3. Аппаратура и техника выполнения анализов.	- владение знаниями об обеспечении техник лабораторного эксперимента и выполнения химического анализа;	

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка -1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка – 0 баллов.

6.12. Практическое занятие №6 «Окислительно-восстановительные процессы»

6.12.1. Содержание устного опроса №5

Вариант 1

- 1. Дайте определение восстановителя и окислителя в химических реакциях.
- 2. Приведите определение стандартного электродного потенциала.
- 3. Опишите работу химического источника тока гальванического элемента.
- 4. Запишите уравнение Нернста для электродного процесса, протекающего на водородном электроде.

Вариант 2

- 1. Дайте определение восстановителя и окислителя в химических реакциях.
- 2. Приведите определение стандартного электродного потенциала.
- 3. Опишите работу химического источника тока гальванического элемента.
- 4. Запишите уравнение Нернста для электродного потенциала цинкового электрода.

6.12.2. Время на выполнение: 20 минут

6.12.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 1. Доказывать с помощью химических реакций химические свойства веществ неорганической природы.	- запись выражений для констант равновесия кислотно-основных реакций, реакций осаждениярастворения, реакций комплексообразования;	
У 2. Составлять уравнения реакций, проводить расчеты по химическим формулам и уравнениям реакции.	- выполнение расчетов для проведения лабораторных работ; - составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 2. Строение и реакционные способности неорганических соединений.	- владение принципами классификации неорганических веществ;	

За верное решение задачи 1–3 выставляется положительная оценка – 1 балл.

За верное решение задачи 4 выставляется положительная оценка – 2 балла.

За неверное решение задачи выставляется отрицательная оценка – 0 баллов.

6.13. Практическое занятие №7 «Окислительно-восстановительные процессы»

6.13.1. Текст контрольной работы №2

Вариант 1

- 1. Напишите уравнение окислительно-восстановительного процесса взаимодействия разбавленной азотной кислоты с магнием, протекающего в кислой среде, используя метод электродных полуреакций.
- 2. Напишите уравнение окислительно-восстановительного процесса взаимодействия гипобромита кальция и сульфида натрия, протекающего в нейтральной среде, используя метод электродных полуреакций.
- 3. Напишите уравнение окислительно-восстановительного процесса взаимодействия гипобромита бария с бериллием, протекающего в щелочной среде, используя метод электродных полуреакций.
- 4. Определите окислитель и восстановитель в каждой реакции.
- 5. Определите тип окислительно-восстановительного процесса для каждой реакции.

Вариант 2

- 1. Напишите уравнение окислительно-восстановительного процесса взаимодействия хромата калия и оксида серы(IV), протекающего в сернокислой среде, используя метод электродных полуреакций.
- 2. Напишите уравнение окислительно-восстановительного процесса взаимодействия манганата калия с сульфитом калия, протекающего в нейтральной среде, используя метод электродных полуреакций.
- 3. Напишите уравнение окислительно-восстановительного процесса взаимодействия пероксида водорода с алюминием, протекающего в щелочной среде, используя метод электродных полуреакций.
- 4. Определите окислитель и восстановитель в каждой реакции.
- 5. Определите тип окислительно-восстановительного процесса для каждой реакции.

6.13.2. Время на выполнение: 45 минут

6.13.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	

У 1. Доказывать с помощью химических реакций химические свойства веществ неорганической природы.	- запись выражений для констант равновесия кислотно-основных реакций, реакций осаждениярастворения, реакций комплексообразования;	
У 2. Составлять уравнения реакций, проводить расчеты по химическим формулам и уравнениям реакции.	- выполнение расчетов для проведения лабораторных работ; - составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 2. Строение и реакционные способности неорганических соединений.	- владение принципами классификации неорганических веществ;	

За верное решение задачи выставляется положительная оценка — 1 балл. За неверное решение задачи выставляется отрицательная оценка — 0 баллов.

6.14. Лабораторное занятие №7 «Координационные соединения»

6.14.1. Содержание лабораторной работы №7

Реакции с участием координационных соединений Часть 1. Осаждение «берлинской лазури» и «турнбелевой сини».

6.14.2. Время на выполнение: 90 минут

6.14.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 3. Использовать лабораторную посуду	- выполнение расчетов масс и объемов	
и оборудование.	реактивов;	
У 5. Применять на практике правила	- составление протоколов	
безопасной работы в химической	лабораторных работ;	
лаборатории.		
3 1. Основы теории протекания	- знание закона постоянства масс;	
химических процессов.	закона действующих масс;	
химических процессов.		
2.2 A HIJODOTYPO W TOVINING DIVIDOTYPO	- владение знаниями об обеспечении	·
3 3. Аппаратура и техника выполнения анализов.	техник лабораторного эксперимента и	
анализов.	выполнения химического анализа;	

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка – 1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка — 0 баллов.

6.15. Лабораторное занятие №8 «Координационные соединения»

6.15.1. Содержание лабораторной работы №8

Реакции с участием координационных соединений Часть 2. Микрогальванические элементы на поверхности углеродистой стали.

6.15.2. Время на выполнение: 90 минут

6.15.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 3. Использовать лабораторную посуду	- выполнение расчетов масс и объемов	
и оборудование.	реактивов;	
У 5. Применять на практике правила безопасной работы в химической лаборатории.	- составление протоколов лабораторных работ;	
3 1. Основы теории протекания химических процессов.	- знание закона постоянства масс; закона действующих масс;	
3 3. Аппаратура и техника выполнения анализов.	- владение знаниями об обеспечении техник лабораторного эксперимента и выполнения химического анализа:	

За верное оформление пункта протокола лабораторной работы выставляется положительная оценка – 1 балл.

За неверное оформление пункта протокола лабораторной работы выставляется отрицательная оценка – 0 баллов.

6.16. Практическое занятие №8 «Химия s- и р-элементов»

6.16.1. Содержание устного опроса №6

- 1. Восстановительные свойства элементов III группы.
- 2. Причины прочности кристаллической решетки оксида алюминия по сравнению с оксидом бора.
- 3. Гидриды элементов III группы и их кислотно-основные характеристики.
- 4. Кислородсодержащие соединения элементов III группы и их кислотно-основные свойства.

5. Галиды р-элементов III группы периодической системы и их гидролиз.

6.16.2. Время на выполнение: 20 минут

6.16.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 1. Доказывать с помощью	- запись выражений для констант	
химических реакций химические	равновесия кислотно-основных	
свойства веществ неорганической	реакций, реакций осаждения-	
природы.	растворения, реакций	
	комплексообразования;	
У 2. Составлять уравнения реакций, проводить расчеты по химическим формулам и уравнениям реакции.	- выполнение расчетов для проведения лабораторных работ; - составление протоколов лабораторных работ;	
3 5. Формы существования химических элементов, современные представления о строении атомов.	- выполнение расчетов, основанных на знании фундаментальных законов постоянства состава вещества и определения единицы количества вещества.	

За верный ответ на вопрос выставляется положительная оценка — 1 балл. За неверный ответ на вопрос выставляется отрицательная оценка — 0 баллов.

6.17. Тестовое задание №1 «Номенклатура неорганических соединений»

6.17.1. Текст тестового задания №1

Вариант 1

Назовите следующие соединения: Ca₃(AsO₄)₂; KHSO₄; Fe(OH)₂Cl; SrTeO₃; KBrO₃

Вариант 2

Назовите следующие соединения: $Ca_2P_2O_7$; NaHSO₃; [Al(OH)₂]₂SO₄; BaHAsO₄; NaBrO₂

Вариант 3

Назовите следующие соединения: BaHPO₄ KNO₂; (CuOH)₂CO₃; NaHSeO₃; KIO₃

Вариант 4

Назовите следующие соединения:NaH₂PO₂; Ca(HSO₄)₂; (MgOH)₂S; LiClO; NiBr₂

6.17.2. Время на выполнение: 5 минут

6.17.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 2. Уметь воспроизводить формулы		
веществ по названиям и наоборот	- корректное и однозначное	
руководствуясь номенклатурой	название указанного соединения	
неорганических веществ		

6.18.Тестовое задание №2 «Эмпирические и графические формулы неорганических веществ»

6.18.1. Текст тестового задания №2

Вариант 1

Напишите эмпирические и графические формулы следующих соединений: метаоловяной кислоты; гидроортофосфата кальция; хлорита натрия; сульфита гидроксомагния.

Вариант 2

Напишите эмпирические и графические формулы следующих соединений: метасвинцовой кислоты; гидродифосфата кальция; гипохлорита калия; сульфида магния.

Вариант 3

Напишите эмпирические и графические формулы следующих соединений: ортооловяной кислоты; гипофосфита бария; гидросульфида стронция; азида свинца.

Вариант 4

Напишите эмпирические и графические формулы следующих соединений: метаоловяной кислоты; фосфита бария; гидросульфита стронция; нитрита свинца.

6.18.2. Время на выполнение: 15 минут

6.18.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 1. Составлять эмпирические и рисовать графические формулы неорганических веществ. Иметь представление о степенях окисления и валентностях элементов входящих в состав этих веществ.	- корректное представление вещества с учетом понятий валентность и степень окисления	
У 2. Уметь воспроизводить формулы веществ по названиям и наоборот руководствуясь номенклатурой неорганических веществ	- корректная интерпретация представленной информации основанная на представлении о номенклатуре неорганических веществ	

6.19. Тестовое задание №3 «Ионные реакции»

6.19.1. Текст тестового задания №3

Вариант 1

Напишите в молекулярном и молекулярно-ионном виде уравнения реакций: а) хлорид серебра + гидроксид аммония(изб.); б) станнит калия + соляная кислота(изб.); в) сульфат железа(III) + карбонат аммония + вода.

Вариант 2

Напишите в молекулярном и молекулярно-ионном виде уравнения реакций: а) тетрагидроксоцинкат(II) калия + муравьиная кислота(изб.); б) карбонат кальция + уксусная кислота; в) сульфат олова(II) + гидроксид калия(изб.)

Вариант 3

Напишите в молекулярном и молекулярно-ионном виде уравнения реакций:а) сульфаттетраамминмеди(Π) + уксусная кислота(изб.);б) сульфит кальция + серная кислота;в) сульфат алюминия + сульфид аммония + вода

Вариант 4

Напишите в молекулярном и молекулярно-ионном виде уравнения реакций: а) сульфат цинка + гидроксид натрия(изб.); б) гидроксид бария + сернистая кислота; в) сульфат

xрома(III) + карбонат натрия + вода.

6.19.2. Время на выполнение: 20 минут

6.19.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 3. Составлять ионно-молекулярные уравнения обменных реакций включая реакции гидролиза солей.	- запись молекулярного и ионо- молекулярного вида реакции -корректное представление продуктов реакции	

6.20 Тестовое задание №4 «Геометрическая конфигурация неорганических соединений»

6.20.1. Текст тестового задания №4

Вариант 1

Используя метод валентных связей, дайте описание перечисленных ниже соединений. Укажите орбитали центрального атома, участвующие в образовании химических связей, механизм образования связей, их кратность и полярность. Определите тип гибридизации орбиталей центрального атома, геометрическую конфигурацию и полярность соединения. 1) H_2Se ; 2) NOCl; 3) SO_3 ²⁻; 4) $[Zn(OH)_4]^{2-}$

Вариант 2

Используя метод валентных связей, дайте описание перечисленных ниже соединений. Укажите орбитали центрального атома, участвующие в образовании химических связей, механизм образования связей, их кратность и полярность. Определите тип гибридизации орбиталей центрального атома, геометрическую конфигурацию и полярность соединения. 1) AsH_3 ; 2) SO_3 ; 3) PO_4 ³⁻; 4) $[Ni(NH_3)_4]^{2+}$

Вариант 3

Используя метод валентных связей, дайте описание перечисленных ниже соединений. Укажите орбитали центрального атома, участвующие в образовании химических связей, механизм образования связей, их кратность и полярность. Определите тип гибридизации орбиталей центрального атома, геометрическую конфигурацию и полярность соединения. 1) $POCl_3$; 2) SO_2Cl_2 ; 3) ClO_4 ; 4) $[PtCl_4]^{2-}$, (диамагнитный).

Вариант 4

Используя метод валентных связей, дайте описание перечисленных ниже соединений. Укажите орбитали центрального атома, участвующие в образовании химических связей, механизм образования связей, их кратность и полярность. Определите тип гибридизации орбиталей центрального атома, геометрическую конфигурацию и полярность соединения. 1) PCl_3 ; 2) $SOCl_2$; 3) ClO_2 ; 4) $[AuCl_4]$

6.20.2. Время на выполнение: 45 минут

6.20.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У.1. Составлять эмпирические и рисовать		
графические формулы неорганических	-корректное изображение	
веществ. Иметь представление о	графической формулы	
степенях окисления и валентностях	рассматриваемого иона и выбор	
элементов входящих в состав этих	центрального атома	
веществ.		
У 4. определять геометрическую конфигурацию молекул и ионов, тип гибридизации центрального атома, кратность и полярность связей в молекуле	-корректное отображение электронной и электронног графической формулы -правильное определение гибридизации центрального атома или ее отсутствие -построение геометрической конфигурации состава -определение полярности молекулы в целом	

6.21. Тестовое задание №5 «Термохимия»

6.21.1. Текст тестового задания №5

Вариант 1

Определите, в каком направлении (слева направо, или справа налево) должна в стандартных условиях протекать реакция:

$$2AgCl + H_2S_{(\Gamma a3)} = Ag_2S + 2HCl_{(\Gamma a3)}$$
, если:

АgCl
$$H_2S_{\text{(газ)}}$$
 $Ag_2S_{\text{(Газ)}}$ $Ag_2S_{\text{(Газ)}}$ ΔH^0 [кДж/моль] -127,166 -20,63 -32,59 -92,307 S^0 [Дж/моль·К] 96,17 205,68 144,01 186,80 **Вариант 2**

Определите, в каком направлении (слева направо, или справа налево) должна в стандартных условиях протекать реакция:

$$SO_2 + NO_2 = SO_3 + NO$$
, если:

SO₂ SO₃ NO₂ NO

$$\Delta H^0$$
, [кДж/моль] -296,9 -395,2 33,89 90,37 S 0 , [Дж/моль o K] 248,1 256,2 240,4 210,6 Вариант 3

Определите, в каком направлении (слева направо, или справа налево) должна в стандартных условиях протекать реакция:

$$SO_2 + 2H_2S = 3S + 2H_2O_{(жидк.)}$$
, если:

$$SO_2$$
 H_2S S $H_2O_{(жидк.)}$ ΔH^0 , [кДж/моль] -296,9 -20,15 0 -285,8 S^0 , [Дж/моль:К] 248,1 205,6 31,88 70,08

Вариант 4

Вычислите изменение свободной энергии Гиббса для

$$SO_2 + 2H_2S = 3S + 2H_2O_{(жидк.)}$$
, если: $SO_2 + H_2S + S + H_2O_{(жидк.)}$ ΔH^0 , [кДж/моль] -296,9 -20,15 0 -285,8 S^0 , [Дж/моль-К] 248,1 205,6 31,88 70,08

6.21.2. Время на выполнение: 15 минут

6.21.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
	- определение изменений энтальпии,	
У5. Простейшие термодинамические	энтропии и изобарно-изотермического	
расчеты по термохимическим	потенциала реакции	
уравнениям	- определение направления протекания	
	реакции	

6.22. Тестовое задание №6«Кинетика и смещение равновесия»

6.22.1. Текст тестового задания №6

Вариант 1

В каком направлении будет смещаться равновесие в системах:

a) CaO + 3C
$$\rightarrow$$
 \leftarrow CaC₂ + CO, Δ H⁰=460 кДж,

б) $2NH_3+1,5O_2$ ← $N_2+3H_2O_{(ж.)}$, $\Delta H^0=-766$ кДж.; при понижении: 1) температуры, 2) павления?

Написать выражения для скорости прямой и обратной реакции согласно закону действующих масс.

Вариант 2

В каком направлении будет смещаться равновесие в системах:

а) $SO_2 + 2H_2S \xrightarrow{\sim} 3S + 2H_2O_{(жидк.)} + \mathbf{Q}$; б) $H_2S + Cl_2 \xrightarrow{\sim} 2HCl + S + \mathbf{Q}$. при понижении: 1) температуры, 2) давления?

Написать выражения для скорости прямой и обратной реакции согласно закону действующих масс.

Вариант 3

В каком направлении будет смещаться равновесие в системах:

а) $CO + Cl_2$ ← $COCl_2 + 112,5$ кДж; б) $2NO_2$ ← $2NO + O_2$ -112,96 кДж; при повышении: 1) температуры, 2) давления?\

Написать выражения для скорости прямой и обратной реакции согласно закону действующих масс.

6.22.2. Время на выполнение: 15 минут

6.22.3. Перечень объектов контроля и оценки

Наименование объектов контроля и	Основные показатели оценки	Оценка
оценки	результата	
У 6. Выражения для скорости реакций		
через равновесные концентрации.	- отображение закона действующих	
Определять константу равновесия	масс	
реакций и направление смещения	-применение принципа Ле-Шателье	
равновесия под воздействием внешних	для определения смещения равновесия	
факторов		

6.23 Вопросы к экзамену

- 1. Электроотрицательность атомов элементов. Относительная электроотрицательность. Полярность химической связи,полярность молекул и ионов.
- 2. Зависимость скорости химической реакции от температуры. Энергия активации.
- 3. Радиусы атомов, их изменение в периодах и группах Периодической системы. Зависимость кислотно-основных свойств соединения от радиуса центрального атома.
- 4. Роль молекул растворителя в процессах электролитической диссоциации. Аквакомплексы металлов, их кислотные свойства.
- 5. Метод валентных связей и понятие о валентности элементов.
- 6. Термохимические уравнения. Тепловой эффект и изменение стандартной энтальпии в химических реакциях
 - 7. Валентные возможности атомов элементов в химических соединениях.
- 8. Гидролиз солей, образованных: **а)** сильным основанием и слабой кислотой; **б)** слабым основанием и сильной кислотой; **в)** слабым основанием и слабой кислотой. Качественная оценка **рН** растворов гидролизующихся солей.

- 9. Окислительно восстановительные реакции. Типичные окислители, восстановители. Соединения с двойственной функцией. Приведите примеры.
- 10. Принцип Ле-Шателье. Смещение химического равновесия при изменении концентраций реагентов; давления; температуры.
- 11. Квантовые характеристики состояний электрона в атоме (квантовые числа). Электронные конфигурации атомов элементов. Электронное строение многоэлектронных атомов.
- 12. Электролитическая диссоциация веществ в растворах. Кислоты, основания, амфотерные гидроксиды, соли. Сильные и слабые электролиты.
- 13. Планетарная модель атома водорода Резерфорда, постулаты Бора.
- 14. Стандартная энтропия веществ. Изменение энтропии при изменениях агрегатного состояния вещества. Расчёт изменения стандартной энтропии в химической реакции.
- 15. Порядок заполнения орбиталей многоэлектронных атомов: принцип минимума энергии, принцип Паули, правило Хунда; s-, p-, d- и f-элементы. Полные и неполные электронные аналоги.
- 16. Слабые электролиты. Закон разбавления Оствальда. Соотношение между степенью диссоциации и концентрацией слабых электролитов.
- 17. Метод валентных связей. Причина образования химической связи. Обменный и донорно-акцепторный механизмы образования химической связи. Характеристики химической связи.
- 18. Равновесия в насыщенных растворах малорастворимых солей. Произведение растворимости. Расчёт растворимости малорастворимой соли. Способы уменьшения или увеличения растворимости.
- 19. Магнитные свойства молекул и ионов. Диа- и парамагнитные молекулы и их свойства.
- 20. Влияние температуры на скорость химической реакции. Константа скорости реакции, её связь с энергией активации. Уравнение Аррениуса.
- 21. Энергия ионизации; сродство к электрону; электроотрицательность атомов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы.
- 22. Электролитическая диссоциация сильных и слабых электролитов в водных растворах. Вычисление концентраций ионов.
- 23. Ковалентная химическая связь. Особенности ковалентной связи: направленность и насыщаемость. Молекулы с нечетным числом электронов.
- 24. Понятие о скорости химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных системах.
- 25. Характеристики химической связи энергия, длина, кратность, полярность. Причина образования химической связи.
- 26. Химическое равновесие. Константа равновесия. Расчёт равновесных концентраций веществ.
- 27. Комплексные соединения. Геометрическое строение комплексных соединений. Электролитическая диссоциация и константы нестойкости комплексных соединений.
- 28. Электролитическая диссоциация воды. Ионное произведение воды $\mathbf{K}_{\mathbf{w}}$, его зависимость от температуры. Водородный показатель.

- 29. Периодические и непериодические свойства атомов элементов. Полные и неполные электронные аналоги.
- 30. Основные положения теории кислот и оснований Аррениуса. Зависимость кислотно-основных свойств соединений от степени окисления центрального атома.
- 31. Форма и пространственное расположение **s-, p-** и **d-** орбиталей в атоме.
- 32. Реакции самоокисления самовосстановления (диспропорционирования). Внутримолекулярные окислительно восстановительные процессы.
- 33. Теория отталкивания **σ-**связывающих и неподелённых электронных пар и её применение для описания геометрической конфигурации молекул и ионов.
- 34. Окислительно восстановительные реакции. Типичные окислители и восстановители (приведите примеры реакций).
- 35. Квантовомеханическая модель строения атома водорода. Квантовые числа электрона, форма **s-, p-** и **d-** орбиталей.
- 36. Равновесия в водных растворах солей, содержащих многозарядные катионы металлов. Вычисление рН (приведите примеры).
- 37. Степени окисления элементов, их связь с положением элементов в Периодической системе. Классы неорганических соединений, номенклатура неорганических соединений.
- 38.. Динамический характер химического равновесия. Зависимость скорости реакции от природы веществ, их концентрации и температуры.
- 39. Комплексные соединения. Химическая связь в комплексных соединениях и строение комплексных ионов. Электролитическая диссоциация комплексов, ступенчатые и общая константы нестойкости.
- 40. Закон Гесса и следствия из него. Применение закона Гесса для расчёта изменения энтальпии в химических реакциях.
- 41. Порядок заполнения орбиталей многоэлектронных атомов; принцип минимума энергии, принцип Паули; правило Хунда; **s-, p-, d-,** и **f**-элементы.
- 42. Равновесия в насыщенных растворах малорастворимых солей. Расчёт растворимости малорастворимой соли. Способы увеличения или уменьшения растворимости.
- 43. Структура Периодической системы элементов: периоды, группы, подгруппы, вставные декады. Взаимосвязь между электронной структурой атомов элементов и их положением в Периодической системе.
- 44. Факторы, влияющие на скорость химической реакции. Энергия активации химической реакции как потенциальный барьер реакции. Химическое равновесие. Динамический характер химического равновесия. Влияние внешних факторов (температура, давление) на состояние равновесия.
- 45. Понятие о скорости химической реакции. Порядок и молекулярность химической реакции. Представление о механизмах химических реакций.
- 46. Гибридизация атомных орбиталей и геометрическая конфигурация молекул и ионов.
- 47. Амфотерность гидроксидов с точки зрения теории электролитической диссоциации. Реакции амфотерных гидроксидов с кислотами и основаниями.
- 48. Понятие о гибридизации атомных орбиталей и его применение для описания структуры молекул и ионов. Приведите примеры соединений.
- 49. Влияние температуры на величину свободной энергии Гиббса и константу

равновесия.