Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 03.11.2023 13:36:57 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
« 22 » апреля 2021 г.

Рабочая программа дисциплины ТЕХНОЛОГИЯ СОРБЦИОННОЙ И ИОНООБМЕННОЙ ОЧИСТКИ ВОДЫ

Направление подготовки

18.04.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии

Направленность программы магистратуры

Водоочистка в химической, нефтехимической и биотехнологии

Квалификация

Магистр

Форма обучения

Очная

Факультет химической и биотехнологии

Кафедра химии и технологии материалов и изделий сорбционной техники

Санкт-Петербург

ЛИСТ СОГЛАСОВАНИЯ

Должность разработчика	Подпись	Ученое звание, фамилия, инициалы
Доцент		Спиридонова Е.А.

Рабочая программа дисциплины «Технология сорбционной и ионообменной очистки воды» обсуждена на заседании кафедры химии и технологии материалов и изделий сорбционной техники протокол от « 12 » _апреля_2021 № 6

Заведующий кафедрой

В.В. Самонин

Одобрено учебно-методической комиссией факультета химической и биотехнологии протокол от $\underline{(20)} = \underline{100} =$

Председатель М.В. Рутто

СОГЛАСОВАНО

Руководитель направления подготовки	Д.А. Смирнова
«Энерго- и ресурсосберегающие	
процессы в химической технологии,	
нефтехимии и биотехнологии»	
Директор библиотеки	Т.Н.Старостенко
Начальник методического отдела	Т.И.Богданова
учебно-методического управления	
Начальник	С.Н.Денисенко
учебно-методического управления	

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	04
2. Место дисциплины (модуля) в структуре образовательной программы	06
3. Объем дисциплины	06
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	07
4.2. Занятия лекционного типа	08
4.3. Занятия семинарского типа	13
4.3.1. Семинары, практические занятия	13
4.3.2. Лабораторные занятия	14
4.4. Самостоятельная работа	14
5. Перечень учебно-методического обеспечения для самостоятельной работы обучан	ощихся
по дисциплине	15
6. Фонд оценочных средств для проведения промежуточной аттестации	15
7. Перечень учебных изданий, необходимых для освоения дисциплины	16
8. Перечень электронных образовательных ресурсов, необходимых для	освоения
дисциплины	
9. Методические указания для обучающихся по освоению дисциплины	17
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	
10.1. Информационные технологии	
10.2. Программное обеспечение	
10.3. Базы данных и информационные справочные системы	18
11. Материально-техническое обеспечение освоения дисциплины в ходе реализации	
образовательной программы	18
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	18

Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

В результате освоения образовательной программы магистратуры обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ПК-2	ПК-2.2	Знать:
Способен выбирать и использовать	Знание требований, предъявляемых к	классификацию фильтрующих материалов и ионитов,
современные методы и аналитическое	фильтрующим и ионообменным	области их применения, их свойства, требования,
оборудование для определения	материалам	предъявляемые к ним в процессах водообработки (3H-1);
параметров водных сред		Уметь:
		подбирать фильтрующие материалы и иониты под
		заданные требования (У-1);
		Владеть:
		навыками оценки параметров фильтрующих материалов и
		ионитов (Н-1)
	ПК-2.3	Знать:
	Выбор методов определения параметров	параметры фильтрующих материалов и методы их
	фильтрующих материалов	определения (3H-2);
		Уметь:
		подбирать методику определения параметров
		фильтрующих материалов (У-2);
		Владеть:
		навыками оценки соответствия фильтрующих материалов
HIC 2	HIC 2.2	заданным требованиям (Н-2)
ПК-3	ПК-3.3	Знать:
Способен использовать знания о	Знание основных физико-химических	основные физико-химические особенности процессов
физико-химических и	особенностей сорбции и ионного обмена	сорбции и ионного обмена в воде в статических и
биохимических процессах в воде		динамических условиях (ЗН-3);
		Уметь:
		использовать основные физико-химические
		закономерности для объяснения протекания процессов

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
		сорбции и ионного обмена (У-3);
		Владеть:
		методиками расчета основных параметров процессов
YYY	W 5 2	сорбции и ионного обмена (Н-3)
ПК-5	ПК-5.3	Знать:
Способен подбирать, разрабатывать и использовать технологические	Управление процессом сорбционной и ионообменной очистки воды	факторы и механизм их влияния, на протекание процессов сорбции и ионного обмена (3H-4);
решения, направленные на		Уметь:
обеспечение высокого качества		прогнозировать изменения протекания процессов
воды		сорбции и ионного обмена при изменении внешних
БОДЫ		условий (У-4);
		Владеть:
		навыками управления процессом сорбции и ионного
		обмена в процессах очистки воды (Н-4)
	ПК-5.4	Знать:
	Знание основных методов обессоливания	основные методы, применяемые для обессоливания воды,
	воды	концентрационные интервалы, области применения (ЗН-
		5);
		Уметь:
		подбирать метод обессоливания воды в соответствии с
		заданными техническими требованиями (У-5);
		Владеть:
		навыками проведения процессов обессоливания с
		использованием методов ионного обмена (Н-5)

2. Место дисциплины в структуре образовательной программы.

Дисциплина «Технология сорбционной и ионообменной очистки воды» относится к части формируемой участниками образовательных отношений Блока 1 «Дисциплины» образовательной программы магистратуры и изучается на 1 курсе во 2 семестре (Б1.В.03).

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении общеинженерных дисциплин, а также «Сорбирующие материалы и сорбционные процессы», «Контроль качества воды», «Реагентные методы очистки воды», «Реагентное хозяйство». Полученные в процессе изучения дисциплины «Технология сорбционной и ионообменной очистки воды» знания, умения и навыки могут быть использованы при дальнейшем обучении, прохождении учебной и производственной практики, а также при выполнении выпускной квалификационной работы.

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	6/ 216
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	132
занятия лекционного типа	32
занятия семинарского типа, в т.ч.	82
семинары, практические занятия (в том числе практическая подготовка)*	18 (1)
лабораторные работы (в том числе практическая подготовка)	64 (7)
курсовое проектирование (КР или КП)	-
КСР	18
другие виды контактной работы	-
Самостоятельная работа	84
Форма текущего контроля (Кр, реферат, РГР, эссе)	-
Форма промежуточной аттестации (КР, КП, зачет, экзамен)	Зачет

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

		о типа,	Занятия семинарского типа, академ. часы		абота,	генции	каторы
№ п/п	Наименование раздела дисциплины	Занятия лекционного типа, академ. часы	Семинары и/или практические занятия	Лабораторные работы	Самостоятельная работа, академ. часы	Формируемые компетенции	Формируемые индикаторы
1.	Особенности сорбции из водных сред. Многокомпонентность сорбции. Основные закономерности и уравнения: статика, кинетика, динамика. Аппаратурное оформление. Применяемые адсорбенты	10	6	22	20	ПК-2 ПК-3 ПК-5	ПК-2.2. ПК-2.3 ПК-3.3. ПК-5.3
2.	Ионный обмен. Основные закономерности и уравнения: статика, кинетика, динамика. Аппаратурное оформление. Применяемые адсорбенты	10	6	22	20	ПК-2 ПК-3 ПК-5	ПК-2.2. ПК-2.3 ПК-3.3. ПК-5.3
3.	Области применения технологий сорбционной и ионообменной в водообработке	8	4	20	20	ПК-3 ПК-5	ПК-3.3. ПК-5.3 ПК-5.4
4.	Регенерация адсорбентов. Регенерация ионообменных материалов	4	2	-	4	ПК-3 ПК-5	ПК-3.3 ПК-5.5

4.2. Занятия лекционного типа.

№ раздела	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
дисциплины	Особенности сорбции из водных сред. Многокомпонентность сорбции. Применяемые адсорбенты	4	
	Дисперсность. Классификация систем по степени дисперсности. ВДПТ — высокодисперсные пористые тела. Величина удельной поверхности — характеристика пористого тела. Эквивалентный радиус пор. Классификация пор по размерам. Понятия		
	сорбент, сорбтив, сорбат. Виды сорбционных явлений (физическая адсорбция, абсорбция, капиллярная конденсация, химическая адсорбция, хемосорбция, активированная сорбция). Природа адсорбционных сил.		
	Составляющие дальнодействующих сил. Исследования Гамакера. Электролитическая теория Лифшица. Водородная связь. Пористая структура адсорбентов, ее основные характеристики. Особенности микро-, мезо-, макропор. Структурная и энергетическая		
	однородность сорбентов. Картина заполнения пор в процессе сорбции. Равновесная величина адсорбции. Величина удельной сорбции. Понятие «пористая структура». Обратимость адсорбции. Термическое уравнение обратимой		
	сорбции. Изотермы, изобары, изопикны, изостеры адсорбции. Уравнение адсорбции Гиббса. Уравнение адсорбции Фрейндлиха. Определение констант уравнения. Классификация изотерм адсорбции (ИА) по		
	Бруннауэру. ИА в относительных координатах ($a = f(p/p_s)$). Области низких, средних, высоких относительных давлений. Факторы, влияющие на вид ИА. Основные параметры пористой структуры (ПС). Работы М.М.Дубинина		
	Предельная величина адсорбции. Объем микропор. Предельная величина сорбции. Предельный объем сорбционного пространства. Объем мезопор. Исправленная предельная величина адсорбции. Объем макропор.		
	Суммарный объем пор. Истинная, пикнометрическая, кажущаяся, насыпная плотности сорбента. Методы их определения. Порозность слоя. Метод «молекулярных щупов» – структурно- сорбционный метод исследования		
	ПС. Интегральная теплота сорбции. Дифференциальная теплота сорбции. Явление		

$\mathcal{N}_{\underline{0}}$	11	05	11
раздела	Наименование темы	Объем,	Инновационная
дисциплины	и краткое содержание занятия	акад. часы	форма
	избирательности адсорбции. Коэффициенты		
	разделения. Влияние различных факторов на		
	избирательность адсорбции. Природные		
	неорганические сорбенты. Синтетические		
	неорганические сорбенты. Углеродные		
	сорбенты.		
1	Основные закономерности и уравнения: статика,	6	
	кинетика, динамика. Аппаратурное оформление.		
	1 31 1 1		
	Очистка жидких (водных) сред. Сравнение		
	традиционных методов (механических,		
	реагентных, биотехнологических и др.) не		
	дающих достаточно высоких степеней очистки		
	для использования воды в питьевом,		
	хозяйственном и оборотном водоснабжении.		
	Использование водоочистительных установок с		
	АУ в развитых странах, производительность,		
	стоимость очистки, сравнение в аналогичными		
	показателями в СССР и России. Основы		
	адсорбции из воды, вытеснительный характер		
	адсорбции, сравнение с адсорбцией газов и		
	паров из газовых сред. Правило Траубе и		
	области его выполнения. Структура жидкой		
	воды. Избирательность и вытеснительный		
	характер адсорбции органических веществ из		
	воды. Влияние взаимодействия воды с		
	поверхностью сорбента и с растворенным		
	веществом на интенсивность адсорбции		
	вещества из воды. Применимость адсорбентов		
	для очистки водных растворов от органических		
	веществ, энергетические характеристики		
	взаимодействия гидрофильной и гидрофобной		
	поверхности с молекулами воды и с		
	органическими молекулами (специфическое и		
	дисперсионное взаимодействие). Примеры		
	соединений адсорбирующихся из воды на АУ		
	по Е (кДж/моль). Концентрационные границы		
	(экономическое обоснование) применимости		
	адсорбционной технологии для очистки		
	сточных вод (СВ). Поправочный коэффициент.		
	Изотерма адсорбции (ИА) растворенного		
	вещества (по БЭТ). Основные ИА из воды по		
	классификации Смита Эмпирическое уравнение		
	Фрейндлиха, применяемое на практике для		
	инженерных решений и расчетов, границы		
	использования. Уравнение Лэнгмюра для		
	растворов, трансформация в уравнение Генри		
	при малых концентрациях. Основы		
	термодинамики: уравнение Гиббса для		
	јуштет тиооси дли		l .

№ раздела	Наименование темы	Объем,	Инновационная
дисциплины	и краткое содержание занятия	акад. часы	форма
<u> </u>	адсорбции из растворов. Предложения		
	Когановского по использованию значений С для		
	классификации адсорбции различных		
	соединений и радикалов на АУ марок БАУ,		
	КАД, ОУ-А. Эльтеков, Плавник: применение		
	ТОЗМ для описания процесса сорбции из		
	растворов, преимущества и недостатки подхода.		
	Порядок гомологических рядов по		
	адсорбируемости на активных углях из водных		
	растворов. Кинетика и динамика сорбции из		
	водных растворов. Факторы, влияющие на		
	скорость сорбции. Сорбция индивидуальных		
	компонентов. Уравнение Шилова, уравнения		
	Стадника (время защитного действия, длина		
	зоны массопереноса, коэффициент диффузии).		
	Уравнение Бохарда-Адамса. Сорбция смесей.		
	Влияние хроматографического эффекта.		
	Сравнение процессов реализующихся в режиме		
	фильтрации и перемешивания. Пористая		
	структура адсорбентов и ее влияние на		
	избирательность адсорбции органических		
	веществ из водных растворов. Сорбция		
	неорганических примесей на активных углях.		
	Примеры хорошо и плохосорбирующихся		
	классов соединений. Интенсификация		
	процессов адсорбции неорганических		
	соединений на АУ, путем их модифицирования.		
	Конструкции адсорберов. Адсорберы,		
	работающие с использованием		
	гранулированных сорбентов (гранулированных		
	активных углей – ГАУ): режимы (фильтрации,		
	перемешивания), структура слоя (плотный		
	стационарный, расширенный, движущийся,		
	ожиженный – КС), схемы потоков (восходящие,		
	нисходящие) и расположения адсорберов		
	(последовательно, параллельно). Назначение		
	АУ, в зависимости от вида изотермы адсорбции		
	и выходной кривой. Особенности конструкций		
	адсорберов, системы распределения водных		
	потоков (провальные и беспровальные),		
	особенности промывки, узкие места. Расчет		
	систем сорбционной очистки для		
	многосекционных противоточных аппаратов с		
	полным перемешиванием в каждой секции и		
	линейной изотермой адсорбции. Формула		
	Родзиллера. Адсорберы работающие с		
	использованием порошкообразных сорбентов		
	(порошкообразных активных углей – ПАУ):		
	режимы (перемешивания, фильтрации:		

№ раздела	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
дисциплины	намывные фильтры с зернистой загрузкой и фильтрующими мембранами). Расчет систем сорбционной очистки для линейной изотермы адсорбции. Основные сорбционные и гидравлические характеристики систем с ПАУ		
2	Ионный обмен. Основные закономерности и уравнения: статика, кинетика, динамика. Аппаратурное оформление. Применяемые адсорбенты	10	
	Классификация ионообменных материалов. Основные физико-химические свойства. Иониты - определение. Разновидности ионов в ионитах. Характеристика ионитов по типу матрицы, внешней форме, пористости, знаку заряда и природе противоионов. Полная, рабочая, статическая, динамическая обменные емкости.		
	Органические и неорганические ионообменные материалы, химический состав и строение, текстура и пористая структура, характер ионогенных групп, стехиометрическая, полная и динамическая обменная емкость. Классификация по ряду признаков. Особенности ионообменных процессов. Ионная		
	пара. Константа ионизации. Метод потенциометрического титрования. Уравнение Гендерсона-Гассельбаха. Сольватация. Гидратация. Особенности гидратации ионов различного вида. Эквивалентный коэффициент сольватации. Селективность ее виды и		
	особенность. Коэффициент распределения, коэффициент селективности. Катиониты. Ряды селективности для основных катионитов и наиболее распространенных ионов. Аниониты. Ряды селективности, механизм поглощения. Изотерма ионного обмена. Графическое		
	изображение, размерность, селективность, обратимость. Кинетика ионного обмена. Динамические характеристики процесса, определение величины динамической обменной емкости. Неорганические иониты. Классификация,		
	свойства и применение. Органические ионообменные смолы, полиамфолиты, редокситы и жидкие иониты. Получение, свойства и применение. Ионообменные смолы, схема реализации процесса сорбции константа равновесия,		

№ раздела	Наименование темы	Объем,	Инновационна
дисциплины	и краткое содержание занятия	акад. часы	форма
дисциплины	статическая (СОЕ) и динамическая (ДОЕ)		
	обменная емкость.		
	Получение ионообменных смол и		
	характеристика основных марок промышленных		
	1 1		
	Характеристика по типу матрицы и ионогенных		
	групп. Аниониты. Характеристика по типу		
	матрицы и виду и положению ионогенных		
	групп. Полиамфолиты, иониты безреагентной		
	регенерации, ионообменные волокна и		
	мембраны, редокситы и жидкие иониты.		
	Конструкции адсорберов. Режимы адсорбции,		
	структура слоя, схемы потоков, компоновка		
	адсорберов.		
3	Области применения технологий сорбционной и	8	
	ионообменной в водообработке		
	Очистка жидких (водных) сред. Традиционные		
	методы и ионный обмен, достоинства и		
	недостатки.		
	Реальные процессы очистки воды от		
	загрязняющих веществ различной природы.		
	Перечень объектов: органические соединения,		
	ионы металлов (радиоактивные, цветные и др.),		
	N-содержащие соединения, S-содержащие		
	соединения, Hg-содержащие соединения.		
	Очистка воды от органических ЗВ. Понятие		
	ХПК, БПК. Описание комплексного процесса		
	очистки воды от ЗВ, путем проведения физико-		
	механической обработки (ФМО),		
	биохимической обработки (БХО), химической		
	(реагентной) обработки (ХРО), физико-		
	химической обработки (ФХО) - сорбционной.		
	Сопоставление БПК/ХПК для различных		
	органических веществ и различных методов		
	обработки. Дехлорирование питьевой воды.		
	Характеристика и механизм процесса.		
	Удаление запахов из питьевой воды, расход АУ		
	для данной цели в развитых странах. Влияние		
	сорбционной обработки воды на ее		
	бактериальную обсемененность.		
	Характеристика процесса по коли-индексу и		
	микробному числу. Очистка воды от ионов		
	металлов. Применение пористых носителей в		
	процессах БХО воды в качестве носителей		
	иммобилизованных микроорганизмов. Удаление		
	катионов из воды. Удаление анионов из воды.		
	Обессоливание. Умягчение.		
4	Регенерация адсорбентов. Классификация	4	
÷	методов регенерации. Регенерация адсорбентов	-	

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	и ионообменных материалов. Основные стадии регенерации адсорбентов и ионитов. Прямоточные и противоточные технологии регенерации ионитов. Фильтры с очисткой воды сверху вниз, а регенерацией снизу вверх. равнение распределения ионов при прямоточной и противоточной регенерации. Реактивация		

4.3. Занятия семинарского типа.

4.3.1. Семинары, практические занятия.

		Объем,		
No		ан	кад. часы	
раздела	Наименование темы		в том числе	Инновационная
дисциплины	и краткое содержание занятия		на	форма
		всего	практическую	
			подготовку	
1	Расчет адсорбера для очистки воды	6	j	
	от растворенных органических			
	веществ.			
	Подбор активного угля для очистки			
	воды от органических веществ.			
	Определение основных параметров			
	активного угля из изотермы			
	сорбции.			
	Определение динамических			
	характеристик активного угля из			
2	выходной кривой.	-		
2	Очистка воды от ионов жесткости.	6		
	Расчет аппарата для ионного обмена.			
	Подбор ионита для проведения			
	очистки от ионов жесткости.			
	Уравнения ионного обмена. Расчет			
	коэффициента распределения.			
3	Использование сорбционных и	4	1	Ролевая игра
	ионообменных процессов для			1
	очистки воды. Составление			
	технологической схемы очистки			
	воды и расчет материального			
	баланса. Обоснование			
	предложенной схемы.			
4	Технико-экономическое	2		
	обоснование процессов			
	регенерации и реактивации			
	активированного угля.			

4.3.2. Лабораторные работы

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы		Примечания
		всего	в том числе на практическую подготовку	
1	Определение параметров пористой структуры углеродных материалов.	10	1	
1	Изучение процесса сорбции органических кислот из водной среды в статических условиях.	12	2	
2	Определение физико-химических свойств ионитов.	10	1	
2	Определение ряда селективности катионита по отношению к катионам металлов в водных средах	12	1	
3	Модифицирование вермикулита и исследование его свойств.	10	1	
3	Изучение процесса удаления коллоидных нефтепродуктов из воды	10	1	

4.4. Самостоятельная работа обучающихся.

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
1	Структура жидкой воды (модель I и II) и водных растворов. Внедрение гидрофильных и гидрофобных молекул (радикалов) в структуру воды, энергетические характеристики, различия	6	Устный опрос № 1, отчеты по лабораторным работам,
1	Сорбция смесей. Влияние хроматографического эффекта. Сравнение процессов реализующихся в режиме фильтрации и перемешивания	7	коллоквиум к лабораторным работам
1	Пористая структура адсорбентов и ее влияние на избирательность адсорбции органических веществ из водных растворов	7	
2	Классификация ионообменных материалов. Физико-химические свойства. Ряды селективности, ионные пары и иогенные группы. Определение констант ионизации.	6	Устный опрос № 2, отчеты по лабораторным работам,
2	Определение физико-химических свойств ионитов. Определение ряда селективности катионита по отношению к катионам металлов в водных средах.	7	коллоквиум к лабораторным работам
2	Основные промышленные катиониты и аниониты	7	

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
3	Ионообменные материалы и их место в водоочистке. Концентрационные границы применимости адсорбционной технологии для очистки сточных вод (СВ). Поправочный коэффициент.	4	Устный опрос № 3, отчеты по лабораторным работам, коллоквиум к
3	Хроматографический эффект и его использование для очистки воды, разделения и выделения тяжелых элементов.	4	лабораторным работам
3	Основные методы обессоливания воды. Сравнение очистки воды с помощью обратного осмоса и ионитов. Использование для обессоливания и глубокой очистки воды. Сравнение с другими методами обессоливания.	4	
3	Удаление из воды особо токсичных соединений. Источник загрязнений, уровень ПДК, возможности БХО и сорбционного метода.	4	
3	Очистка СВ гидролизных заводов. Основные ЗВ, влияние методов обработки на БПК/ХПК очищенных стоков. Обесфеноливание подсмольных СВ.	4	
4	Методы регенерации сорбентов. Оборотное водоснабжение промывных вод.	4	Устный опрос № 4

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: https://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме зачета.

Зачет предусматривает выборочную проверку освоения предусмотренных элементов компетенций и комплектуются вопросами (заданиями) двух видов: теоретический вопрос (для проверки знаний) и комплексная задача (для проверки умений и навыков).

При сдаче зачета, студент получает два вопроса из перечня вопросов, время подготовки студента к устному ответу - до 30 мин.

Пример варианта вопросов на зачете:

Вариант 1

- 1. Эльтеков, Плавник: применение ТОЗМ для описания процесса сорбции из растворов, преимущества и недостатки подхода. Порядок гомологических рядов по адсорбируемости на активных углях из водных растворов
- 2. Полиамфолиты: получение, структура и свойства, основное назначение.

Фонд оценочных средств по дисциплине представлен в Приложении № 1

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – оценка «зачет».

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Добкина, Е.И. Пористая структура катализаторов и адсорбентов: учебное пособие/ Е.И. Добкина, Л.А. Нефедова, С.А. Лаврищева; Министерство образования и науки Российской Федерации; Санкт-Петербургский государственный технологический институт (технический университет), Кафедра технологии катализаторов. Санкт-Петербург: СПбГТИ(ТУ), 2010. 24 с.
- 2. Мухин, В.М. Производство и применение углеродных адсорбентов / В. М. Мухин, В. Н. Клушин; Российский химико-технологический университет им. Д. И. Менделеева. Москва: РХТУ, 2012. 307 с. ISBN 978-5-7237-0905-8.
- 3. Основные процессы и аппараты химической технологии: пособие по проектированию/ Γ .С. Борисов, В.П.Брыков, Ю.И. Дытнерский [и др.]; Под ред. Ю.И.Дытнерского. –Москва: Альянс, 2015. 496c. ISBN 978-5-903034-87-1
- 4. Романков, П.Г. Методы расчета процессов и аппаратов химической технологии (примеры и задачи): учебное пособие для вузов / П. Г. Романков, В. Ф. Фролов, О. М. Флисюк. Санкт-Петербург: Химиздат, 2010. 543 с. ISBN 978-5-93808-182-6.
- 5. Самонин, В.В. Сорбционные технологии защиты человека, техники и окружающей среды / В. В. Самонин, М. Л. Подвязников, Е. А. Спиридонова. Санкт-Петербург : Наука, 2021. 531 с. ISBN 978-5-02-040519-6
- 6. Сорбирующие материалы, изделия, устройства и процессы управляемой адсорбции/ В.В. Самонин, М.Л. Подвязников, В.Ю. Никонова [и др.] Санкт-Петербург: Наука, 2009. 271 с. ISBN 978-5-02-025346-9
- 7. Фенелонов, В.Б. Адсорбционно-капиллярные явления и пористая структура катализаторов и адсорбентов: сборник задач и вопросов с ответами и решениями/ В.Б. Фенелонов, М.С. Мельгунов; Новосибирский государственный университет. Факультет естественных наук. Новосибирск: издательство Новосибирского университета, 2010. 188 с. ISBN 978-5-94356-934-0.

б) электронные учебные издания:

8. Григорьева, Л.В. Определение защитных характеристик слоя активного угля: Практикум / Л. В. Григорьева, В. В. Далидович; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии материалов и изделий сорбционной техники. — Санкт-Петербург: СПбГТИ(ТУ), 2016. - 15 с. // СПбГТИ. Электронная библиотека. - URL: https://technolog.bibliotech.ru (дата обращения: 16.03.2021). - Режим доступа: для зарегистрир. пользователей.

- 9. Использование модифицированных сорбционно-активных материалов для обеззараживания воды : Практикум / Е. А. Спиридонова, А.Д. Тихомирова, В.В. Самонин [и др.] ; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), кафедра химической технологии материалов и изделий сорбционной техники. Санкт-Петербург : [б. и.], 2016. 56 с. //СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 10.04.2021). Режим доступа: для зарегистрир. пользователей
- 10. Колосенцев, С.Д. Определение эффективного объема микропор углеродных сорбентов: методические указания / С. Д. Колосенцев, В. Л. Киселева, Е. Д. Хрылова; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии материалов и изделий сорбционной техники. Санкт-Петербург: СПбГТИ(ТУ), 2013. 13 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 16.03.2021). Режим доступа: для зарегистрир. пользователей.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

учебный план, РПД и учебно-методические материалы: http://media.technolog.edu.ru

электронно-библиотечные системы:

«Электронный читальный зал – БиблиоТех» https://technolog.bibliotech.ru/;

«Лань» https://e.lanbook.com/books/.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Технология сорбционной и ионообменной очистки воды» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТО СПбГТИ(ТУ) 020-2011. КС УКДВ. Виды учебных занятий. Лабораторные работы. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок проведения зачетов и экзаменов.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение.

Программное обеспечение практики включает необходимые программы и пакеты программ:

стандартные программные продукты пакета «Apache_ OpenOffice».

10.3. Базы данных и информационные справочные системы.

Справочно-поисковая система «Консультант-Плюс».

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Для ведения лекционных и практических занятий используются учебные аудитории, оснащенные мебелью, проектором BenQ MX518, ноутбуками HP Compaq Presario в количестве 2 штук, проектором Vivitek D508 DLP, проекционными экранами в количестве 2 штук, пульта для управления презентацией, досками, на 20-30 посадочных мест.

Для проведения лабораторных работ по данной дисциплине используются кондуктометр «Эксперт-002-2-6п», иономер И-500, колориметр КФК-2МП, концентратомер КН-2м, анализатор «Эксперт-001-рН-ХПК-БПК», рН-метр НІ 8314, хроматограф ЛХМ-80, весы ВМК 1501, весы ВМК 651, весы аналитические ВЛР-200.

Для самостоятельной работы помещения оснащены мебелью на 10-15 посадочных мест. Имеются установки ВТА, колориметр КФК-2, ультратермостат 2-15С, электрошкаф сушильный, весы лабораторные ВМ 213, весы ВМК 1501, весы ВМК 651, весы аналитические ВЛР-200. Установки по определению защитных свойств катализаторов и поглотителей, установки «Динамика», анализатор циклогексана «ЛАЦ», анализатор газов «Магистр», центрифуга ЦЛМН Р-10-0,1, колориметр КФК-2МП, спектрофотометр LEKI SS2107, перемешивающее устройство LOIP LS.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Технология сорбционной и ионообменной очистки воды»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание	Этап формирования
ПК-2	Способен выбирать и использовать современные методы и аналитическое оборудование для определения параметров водных сред	промежуточный
ПК-3	Способен использовать знания о физико-химических и биохимических процессах в воде	промежуточный
ПК-5	Способен подбирать, разрабатывать и использовать технологические решения, направленные на обеспечение высокого качества воды	промежуточный

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование	П	I		мированности ности дескрипторов)
индикатора	Показатели сформированности	Критерий	` 1	1 1 /
достижения компетенции	(дескрипторы)	оценивания	«зачет»	«незачет»
· ·	7	П	(пороговый)	(ниже порогового)
ПК-2.2	Знает классификацию	Правильные	приводит подробную	не приводит классификацию
Знание требований,	фильтрующих материалов и	ответы на	классификацию фильтрующих	фильтрующих материалов и
предъявляемых к	ионитов, области их	вопросы к зачету № 1-	материалов и ионитов, приводит примеры их использования,	ионитов, приводит примеры их использования, с ошибками
фильтрующим и	применения, их свойства,	3ачету № 1- 15, участие в	перечисляет их свойства, называет	использования, с ошибками перечисляет их свойства, не
ионообменным	требования, предъявляемые	ролевой игре	количественные значения	называет количественные значения
материалам	к ним в процессах	ролевой игре	характеристик ионитов и	характеристик ионитов и
	водообработки (ЗН-1);		адсорбентов, дает пояснения к	адсорбентов, с ошибками дает
			требованиям, предъявляемым к	пояснения к требованиям,
			материалам в процессах	предъявляемым к материалам в
			водообработки	процессах водообработки
	Умеет подбирать	Правильные	выбирает фильтрующие материалы	выбирает фильтрующие материалы
	фильтрующие материалы и	ответы на	и иониты под заданные	и иониты под заданные
	иониты под заданные	вопросы к	требования, обосновывает свой	требования, но не обосновывает
	требования (У-1);	зачету № 1-	выбор	свой выбор
	1	15,		
		выполнение		
		лабораторных		
		работ		
	Владеет навыками оценки	Правильные	самостоятельно проводит оценку	проводит оценку параметров
	параметров фильтрующих	ответы на	параметров фильтрующих	фильтрующих материалов и
	материалов и ионитов (Н-1)	вопросы к	материалов и ионитов	ионитов только при контроле
		зачету № 1-		преподавателем
		15,		
		выполнение		
		лабораторных		
		работ, работа		
		на		
		практических		

Код и наименование индикатора	Показатели сформированности	Критерий	1 1	мированности ности дескрипторов)
достижения	(дескрипторы)	оценивания	«зачет»	«незачет»
компетенции			(пороговый)	(ниже порогового)
		занятиях		
ПК-2.3	Знает параметры	Правильные	перечисляет параметры	не перечисляет параметры
Выбор методов	фильтрующих материалов и	ответы на	фильтрующих материалов,	фильтрующих материалов, не
определения	методы их определения (ЗН-	вопросы к	поясняет необходимость их	предлагает методы их определения
параметров	2);	зачету № 1-15	определения, приводит примеры,	
фильтрующих			предлагает методы их определения	
материалов	Умеет подбирать методику	Правильные	подбирает методику определения	без помощи преподавателя не
	определения параметров	ответы на	параметров фильтрующих	может подобрать методику
	фильтрующих материалов	вопросы к	материалов, соответствующую	определения параметров
	(Y-2);	зачету № 1- 15,	нормативным документам	фильтрующих материалов
		выполнение		
		лабораторных		
		работ		
	Владеет навыками оценки	Выполнение	демонстрирует навыки оценки	не демонстрирует навыки оценки
	соответствия фильтрующих	лабораторных	соответствия фильтрующих	соответствия фильтрующих
	материалов заданным	работ	материалов заданным требованиям	материалов заданным требованиям
	требованиям (Н-2);	-		
ПК-3.3	Знает основные физико-	Правильные	рассказывает основные физико-	не может рассказать основные
Знание основных	химические особенности	ответы на	химические особенности процессов	физико-химические особенности
физико-химических	процессов сорбции и	вопросы к	сорбции и ионного обмена в воде в	процессов сорбции и ионного
особенностей	ионного обмена в воде в	зачету № 16- 37	статических и динамических	обмена в воде в статических и
сорбции и ионного	статических и динамических	31	условиях; приводит различия	динамических условиях;
обмена	условиях (ЗН-3);	П	данных процессов	
	Умеет использовать	Правильные	объясняет, используя основные	не объясняет, используя основные
	основные физико-	ответы на	физико-химические	физико-химические
	химические закономерности	вопросы к зачету № 16-	закономерности, протекание	закономерности, протекание

Код и наименование индикатора	Показатели сформированности Критерий		Уровни сформированности (описание выраженности дескрипторов)		
достижения компетенции	(дескрипторы)	оценивания	«зачет» (пороговый)	«незачет» (ниже порогового)	
	для объяснения протекания процессов сорбции и ионного обмена (У-3);	37	процессов сорбции и ионного обмена	процессов сорбции и ионного обмена	
	Владеет методиками расчета основных параметров процессов сорбции и ионного обмена (H-3);	Выполнение лабораторных работ, выполнение заданий на практических занятиях	рассчитывает основные параметры процессов сорбции и ионного обмена	с ошибками и подсказками преподавателя рассчитывает основные параметры процессов сорбции и ионного обмена	
ПК-5.3 Управление процессом сорбционной и ионообменной	Знает факторы и механизм их влияния, на протекание процессов сорбции и ионного обмена (ЗН-4);	Правильные ответы на вопросы к зачету № 38-68	перечисляет факторы и рассказывает механизм их влияния, на протекание процессов сорбции и ионного обмена	перечисляет факторы, но не поясняет механизм их влияния, на протекание процессов сорбции и ионного обмена	
очистки воды	Умеет прогнозировать изменения протекания процессов сорбции и ионного обмена при изменении внешних условий (У-4);	Правильные ответы на вопросы к зачету № 38-68, выполнение лабораторных работ	прогнозирует и обосновывает изменения протекания процессов сорбции и ионного обмена при изменении внешних условий	прогнозирует, но не обосновывает изменения протекания процессов сорбции и ионного обмена при изменении внешних условий	
	Владеет навыками управления процессом сорбции и ионного обмена в процессах очистки воды (H-4)	Выполнение лабораторных работ	управляет процессом сорбции и ионного обмена при проведении очистки воды	не оказывает влияние на протекание процессов сорбции и ионного обмена при проведении очистки воды	
ПК-5.4	Знает основные методы, применяемые для	Правильные ответы на	перечисляет основные методы, применяемые для обессоливания	перечисляет основные методы, применяемые для обессоливания	

Код и наименование индикатора	Показатели сформированности	Критерий	_ = =	мированности ности дескрипторов)
достижения компетенции	(дескрипторы)	оценивания	«зачет» (пороговый)	«незачет» (ниже порогового)
Знание основных методов обессоливания воды	обессоливания воды, концентрационные интервалы, области применения (ЗН-5); Умеет подбирать метод обессоливания воды в соответствии с заданными	вопросы к зачету № 41- 47, 61-68 Правильные ответы на вопросы к	воды, рассказывает об особенностях их применения, называет концентрационные интервалы подбирает методы обессоливания воды в соответствии с заданными техническими требованиями	воды, но не поясняет особенности их применения, с ошибками называет концентрационные интервалы без помощи преподавателя не подбирает методы обессоливания воды в соответствии с заданными
	техническими требованиями (У-5); Владеет навыками проведения процессов обессоливания с использованием методов ионного обмена (Н-5)	зачету № 41- 47, 61-68 Выполнение лабораторных работ	демонстрирует навыки проведения процессов обессоливания с использованием методов ионного обмена	техническими требованиями не демонстрирует навыки проведения процессов обессоливания с использованием методов ионного обмена

- 3. Типовые контрольные задания для проведения промежуточной аттестации
- а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-2:
- 1 Природа адсорбционных сил. Составляющие дальнодействующих сил. Исследования Гамакера. Электролитическая теория Лифшица. Водородная связь.
- 2 Пористая структура адсорбентов, ее основные характеристики. Особенности микро-, мезо-, макропор.
- 3 Предельная величина адсорбции. Объем микропор. Предельная величина сорбции. Предельный объем сорбционного пространства. Объем мезопор. Исправленная предельная величина адсорбции. Объем макропор. Суммарный объем пор.
- 4 Истинная, пикнометрическая, кажущаяся, насыпная плотности сорбента. Методы их определения. Порозность слоя.
- 5 Метод «молекулярных щупов» структурно- сорбционный метод исследования ПС.
 - 6 Интегральная теплота сорбции. Дифференциальная теплота сорбции.
- 7 Явление избирательности адсорбции. Коэффициенты разделения. Влияние различных факторов на избирательность адсорбции.
 - 8 Природные неорганические сорбенты.
 - 9 Синтетические неорганические сорбенты.
 - 10 Углеродные сорбенты.
 - 11 Сравнение процессов реализующихся в режиме фильтрации и перемешивания.
- 12 Пористая структура адсорбентов и ее влияние на избирательность адсорбции органических веществ из водных растворов.
- 13 Характеристика ионитов по типу матрицы, внешней форме, пористости, знаку заряда и природе противоионов. Полная, рабочая, статическая, динамическая обменные емкости.
- 14 Органические и неорганические ионообменные материалы, химический состав и строение, текстура и пористая структура, характер ионогенных групп, стехиометрическая, полная и динамическая обменная емкость. Классификация по ряду признаков.
 - 15 Метод потенциометрического титрования.

б) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-3:

- 16 Классификация изотерм адсорбции (ИА) по Бруннауэру. ИА в относительных координатах ($a = f (p/p_s)$). Области низких, средних, высоких относительных давлений. Факторы, влияющие на вид ИА.
- 17 Влияние взаимодействия воды с поверхностью сорбента и с растворенным веществом на интенсивность адсорбции вещества из воды.
- 18 Применимость адсорбентов для очистки водных растворов от органических веществ, энергетические характеристики взаимодействия гидрофильной и гидрофобной поверхности с молекулами воды и с органическими молекулами (специфическое и дисперсионное взаимодействие).
- 19 Изотерма адсорбции (ИА) растворенного вещества (по БЭТ). Основные ИА из воды по классификации Смита
- 20 Эмпирическое уравнение Фрейндлиха, применяемое на практике для инженерных решений и расчетов, границы использования.
- 21 Уравнение Лэнгмюра для растворов, трансформация в уравнение Генри при малых концентрациях.
- 22 Основы термодинамики: уравнение Гиббса для адсорбции из растворов. Предложения Когановского по использованию значений G для классификации адсорбции различных соединений и радикалов на АУ марок БАУ, КАД, ОУ-А.

- 23 Эльтеков, Плавник: применение ТОЗМ для описания процесса сорбции из растворов, преимущества и недостатки подхода.
- 24 Порядок гомологических рядов по адсорбируемости на активных углях из водных растворов.
- 25 Основы адсорбции из воды, вытеснительный характер адсорбции, сравнение с адсорбцией газов и паров из газовых сред. Правило Траубе и области его выполнения. Сорбция смесей. Влияние хроматографического эффекта.
- 26 Сорбция неорганических примесей на активных углях. Примеры хорошо и плохосорбирующихся классов соединений.
- 27 Кинетика и динамика сорбции из водных растворов. Факторы, влияющие на скорость сорбции. Сорбция индивидуальных компонентов.
- 28 Уравнение Шилова, уравнения Стадника (время защитного действия, длина зоны массопереноса, коэффициент диффузии). Уравнение Бохарда-Адамса
- 29 Структура жидкой воды. Избирательность и вытеснительный характер адсорбции органических веществ из воды.
 - 30 Уравнение Гендерсона-Гассельбаха.
- 31 Сольватация. Гидратация. Особенности гидратации ионов различного вида. Эквивалентный коэффициент сольватации.
- 32 Селективность ее виды и особенность. Коэффициент распределения, коэффициент селективности.
- 33 Катиониты. Ряды селективности для основных катионитов и наиболее распространенных ионов.
 - 34 Аниониты. Ряды селективности, механизм поглощения.
- 35 Изотерма ионного обмена. Графическое изображение, размерность, селективность, обратимость.
 - 36 Кинетика ионного обмена.
- 37 Динамические характеристики процесса, определение величины динамической обменной емкости.

в) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-5:

- 38 Конструкции адсорберов. Адсорберы, работающие с использованием гранулированных сорбентов Назначение активных углей, в зависимости от вида изотермы адсорбции и выходной кривой.
- 39 Особенности конструкций адсорберов, системы распределения водных потоков, особенности промывки, узкие места. Расчет систем сорбционной очистки для многосекционных противоточных аппаратов с полным перемешиванием в каждой секции и линейной изотермой адсорбции. Формула Родзиллера.
- 40 Адсорберы работающие с использованием порошкообразных сорбентов: Расчет систем сорбционной очистки для линейной изотермы адсорбции. Основные сорбционные и гидравлические характеристики систем с порошкообразными активными углями
- 41 Очистка жидких (водных) сред. Сравнение традиционных методов (механических, реагентных, биотехнологических и др.) не дающих достаточно высоких степеней очистки для использования воды в питьевом, хозяйственном и оборотном водоснабжении.
- 42 Использование водоочистительных установок с активных углей в развитых странах, производительность, стоимость очистки, сравнение в аналогичными показателями в России.
 - 43 Основные стадии регенерации адсорбентов и ионитов.
 - 44 Прямоточные и противоточные технологии регенерации ионитов.
 - 45 Фильтры с очисткой воды сверху вниз, а регенерацией снизу вверх. Сравнение

распределения ионов при прямоточной и противоточной регенерации.

- 46 Реактивация
- 47 Очистка жидких (водных) сред. Традиционные методы и ионный обмен, достоинства и недостатки.
 - 48 Очистка воды от N-содержащие соединения,
 - 49 Очистка воды от S-содержащие соединения
 - 50 Очистка воды от Нд-содержащие соединения.
 - 51 Очистка воды от органических загрязняющих веществ. Понятие ХПК, БПК.
- 52 Описание комплексного процесса очистки воды от загрязняющих веществ, путем проведения физико-механической обработки, биохимической обработки, химической (реагентной) обработки, физико-химической обработки сорбционной. Сопоставление БПК/ХПК для различных органических веществ и различных методов обработки.
- 53 Обесфеноливание подсмольных сточных вод. Состав сточных вод, применяемые в промышленности методы очистки, возможности сорбционной обработки, условия проведения процесса, достигаемые результаты.
- 54 Удаление из воды особо токсичных соединений. Источник загрязнений, уровень ПДК, возможности биохимической обработки и сорбционного метода
- 55 Очистка сточных вод от нефтепродуктов. Применяемые материалы, сорбционная емкость, глубина очистки.
- 56 Очистка сточных вод от красителей и ПАВ. Сорбционная способность используемых активных углей, константы уравнения Фрейндлиха для различных красителей и ПАВ.
- 57 Очистка сточных вод производства синтетического каучука. Основные 3В, возможности биохимической обработки, характеристика по БПК и ХПК, возможности сорбционного метода.
 - 58 Дехлорирование питьевой воды. Характеристика и механизм процесса.
- 59 Удаление запахов из питьевой воды, расход активного угля для данной цели в развитых странах.
- 60 Влияние сорбционной обработки воды на ее бактериальную обсемененность. Характеристика процесса по коли-индексу и микробному числу.
 - 61 Очистка воды от ионов металлов.
- 62 Применение пористых носителей в процессах биохимической обработки воды в качестве носителей иммобилизованных микроорганизмов.
 - 63 Ионообменные технологии в водоподготовке
 - 64 Применение природных сорбентов для очистки воды
 - 65 Удаление катионов из воды.
 - 66 Удаление анионов из воды.
 - 67 Обессоливание воды.
 - 68 Умягчение воды.

При сдаче зачета, студент получает два вопроса из перечня, приведенного выше. Время подготовки студента к устному ответу на вопросы - до 30 мин.

5. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 016-2015. КС УКДВ Порядок проведения зачетов и экзаменов.

По дисциплине промежуточная аттестация проводится в форме зачёта.

Шкала оценивания на зачёте — «зачёт», «незачет». При этом «зачёт» соотносится с пороговым уровнем сформированности компетенции.