Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 10.11.2023 10:11:39 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
« 01 » июня 2021 г.

Рабочая программа дисциплины Введение в технологию энергонасыщенных материалов

Специальность

18.05.01 Химическая технология энергонасыщенных материалов

Специализация

Технология пиротехнических средств

Квалификация

Инженер

Форма обучения

Очная

Факультет инженерно-технологический Кафедра высокоэнергетических процессов

Санкт-Петербург

2021

ЛИСТ СОГЛАСОВАНИЯ

Должность разработчика	Подпись	Ученое звание, фамилия, инициалы
Старший преподаватель		Сусла А.П.

Рабочая программа дисциплины «Введение в технологию энергонасыщенных материалов» обсуждена на заседании кафедры высокоэнергетических процессов протокол от « 12 » мая 2021 № 7 Заведующий кафедрой А.С. Дудырев

Одобрено учебно-методической комиссией инеженерно-технологического факультета протокол от « 27 » мая 2021 № 7

Председатель А. П. Сусла

СОГЛАСОВАНО

Руководитель направления подготовки «Химическая технология энергонасыщенных материалов»	Γ	Г.В. Украинцева
Директор библиотеки	Γ	Г.Н.Старостенко
Начальник методического отдела учебно-методического управления	Т	Г.И.Богданова
Начальник учебно-методического управления		С.Н.Денисенко

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	04
2. Место дисциплины (модуля) в структуре образовательной программы	06
3. Объем дисциплины	06
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	
4.2. Занятия лекционного типа	07
4.3. Занятия семинарского типа	8
4.3.1. Семинары, практические занятия	8
4.3.2. Лабораторные занятия	8
4.4. Самостоятельная работа	08
5. Перечень учебно-методического обеспечения для самостоятельной работы обучаю	
по дисциплине	09
6. Фонд оценочных средств для проведения промежуточной аттестации	
7. Перечень учебных изданий, необходимых для освоения дисциплины	09
8. Перечень электронных образовательных ресурсов, необходимых для одисциплины	
9. Методические указания для обучающихся по освоению дисциплины	09
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	
10.1. Информационные технологии	10
10.2. Программное обеспечение	10
10.3. Базы данных и информационные справочные системы	10
11. Материально-техническое обеспечение освоения дисциплины в ходе реализации	
образовательной программы	10
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	10

Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

В результате освоения образовательной программы специалитета обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции ¹	достижения компетенции ²	(дескрипторы) ³
ПК-5	ПК-5.2	Знать:
Способен исследовать физико- химические, технологические, взрывчатые и физико-механические свойства различных материалов как компонентов пиротехнических составов	Способность применять знания ориентирующиеся на фундаментальные исследования прикладных наук,	Знать: понятия энергонасыщенных материалов, их классификации, и требования, предъявляемые к ним; понятия теплоты сгорания, удельное газовыделение; адиабатическая температура горения (ЗН-1); о физической и химической стойкости составов; недопустимые сочетания компонентов; процессы происходящие в состава при хранении; области применения энергонасыщенных материалов и изделий (ЗН-2); Уметь: классифицировать компоненты ПС; рассчитывать двух и многокомпонентные смеси; составлять брутто уравнения реакции горения и условную формулу состава; рассчитывать содержание общего и активного окислительного агента; калорийность, удельное газовыделение, адиабатическую температуру горения;(У-1); Владеть:
		навыками подбора необходимых изделий под конкретные производственные и промышленные цели (H-1).

¹ Содержание и номер компетенции в точности соответствует ФГОС ВО и отображается в матрице компетенций для конкретной дисциплины

² Код индикатора присваивается руководителем направления подготовки, отображается в матрице компетенции и доводится разработчикам РПД. Повторение кодов индикаторов для конкретной компетенции, реализуемой разными дисциплинами, не допускается

³ Дескрипторы переносятся из матрицы компетенций без смены формулировок

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к дисциплинам специализации вариативной части, формируемой участниками образовательных отношений (Б1.В.ДВ.02.01) и изучается на 3 курсе в 6 семестре.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин «Основы научных исследований» и «Физическая химия». Полученные в процессе изучения дисциплины «Введение в технологию энергонасыщенных материалов» знания, умения и навыки могут быть использованы при изучении дисциплин «Теоретические основы горения и компоненты пиротехнических составов», «Технология и оборудование пиротехнических производств», при прохождении производственной практики, а также при выполнении выпускной квалификационной работы

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	4/144
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	76
занятия лекционного типа	36
занятия семинарского типа, в т.ч.	36
семинары, практические занятия (в том числе практическая подготовка)*	-
лабораторные работы (в том числе практическая подготовка)	36 (18)
курсовое проектирование (КР или КП)	-
КСР	4
другие виды контактной работы	-
Самостоятельная работа	68
Форма текущего контроля (Кр, реферат, РГР, эссе)	тесты
Форма промежуточной аттестации (КР, КП, зачет, экзамен)	Зачет

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

		о типа,	Занятия семинарского типа, академ. часы		работа, ы	стенции	каторы
№ п/п	Наименование раздела дисциплины	Занятия лекционного академ. часы	Семинары и/или практические занятия	Лабораторные работы	Самостоятельная ра академ. часы Формируемые компет	Формируемые компетенции	Формируемые индикаторы
1.	Общие сведения. Компоненты энергонасыщенных материалов.	24	0	24	38	ПК-5	ПК-5.2
2.	Основные свойства энергонасыщенных материалов и области их применения.	12	0	12	30	ПК-5	ПК-5.2

4.2. Занятия лекционного типа.

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационна я форма
1	Введение: Общие понятия о пиротехнике и энергонасыщенных материалах. История развития пиротехники. Классификация пиротехнических составов. Требования к пиротехническим составам.	2	
1	Назначение компонентов ПС: Понятия окислитель, горючее, пиротехнический состав. Компоненты пиротехнических составов. Требования, предъявляемые к ним. Общие свойства.	2	
1	Расчет рецептур: Расчет рецептур двойной смеси по уравнения реакции. Кислородный эквивалент окислителя и горючего, его расчет. Расчет смесей по кислородным эквивалентам. Кислородный баланс. Коэффициент обеспеченности смеси окислителем. Расчет многокомпонентных рецептур. Брутто уравнения реакции горения. Условная формула состава.	4	T^4

⁴ **Примеры образовательных технологий, способов и методов обучения** (с сокращениями): традиционная лекция (Л), лекция - пресс-конференция (ЛПК), занятие – конференция (ЗК), тренинг (Т), дебаты (Д), мозговой штурм (МШ), мастер-класс (МК), «круглый стол» (КрСт), активизация творческой деятельности (АТД), регламентированная дискуссия (РД), дискуссия

6

No			
раздела	Наименование темы	Объем,	Инновационна
дисциплины	и краткое содержание занятия	акад. часы	я форма
1	Свойства окислителей и области их применения: Классификация окислителей, их свойства. Понятие об общем и активном килсороде. Температура плавления и разложения окислителя. Гигроскопичность и увлажняемость. Свойства и области	4	
	применения отдельных окислителей.		
1	Свойства горючих, металлические горючие, неорганические и органические горючие: Общие требования, предъявляемые к горючим. Классификация горючих. Потребность в окислителе и теплотворная способность горючих. Металлические горючие. Их получение и свойства. Применение металлических горючих в энергонасыщенных материалах. Неорганические горючие. Их свойства и применение в энергонасыщщеных материалах. Органические горючие. Их свойства и применение в энергонасыщщеных материалах.	8	
1	Связующие, добавки, растворители, вспомогательные материалы: Роль связующих, факторы, влияющие на прочность. Смолы. Масла. Нитраты целлюлозы. Каучуки. Специальные и технологические добавки. Аэрозолеобразователи. Цветопламенные добавки. Газообразователи. Растворители. Вспомогательные материалы и полуфабрикаты.	4	Φ
2	Взрывчатые вещества: Элементы теории взрыва. Классификация ВВ, требования к ВВ, продукты взрыва. Взрывчатые свойства пиротехнических составов.	4	
2	Теплота сгорания и газопроизводительность: Теплота сгорания. Ее расчет. Экспериментальное определение. Удельное газовыделение. Его расчет.	2	Φ
	Адиабатическая температура горения: Общие принципы расчета адиабатической температуры горения. Энтальпийный метод. Частные случаи.	2	

типа форум (Ф), деловая и ролевая учебная игра (ДИ, РИ), метод малых групп (МГ), занятия с использованием тренажёров, имитаторов (Тр), компьютерная симуляция (КтСм), использование компьютерных обучающих программ (КОП), интерактивных атласов (ИА), посещение врачебных конференции, консилиумов (ВК), участие в научно-практических конференциях (НПК), съездах, симпозиумах (Сим), учебно-исследовательская работа студента (УИРС), проведение предметных олимпиад (О), подготовка письменных аналитических работ (АР), подготовка и защита рефератов (Р), проектная технология (ПТ), экскурсии (Э), дистанционные образовательные технологии (ДОТ).

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационна я форма
2	Физическая и химическая стойкость составов: Сроки хранения составов. Процессы, происходящие в составах при хранении. Недопустимые сочетания компонентов. Химическая совместимость компонентов. Склонность к самовозгоранию. Смеси, воспламеняющиеся с водой и реагентами.	2	
2	Применение энергонасыщенных материалов в технике и народном хозяйстве: Добыча полезных ископаемых. Пиротехнические электрогенераторы. Разведка земных недр. Применение энергонасыщенных материалов в строительстве, металлургии, машиностроении, ракетно-космической техники. Газогенераторы и аэрозоли. Фейерверки. СВС.	2	КрСт

4.3. Занятия семинарского типа.

4.3.1. Семинары, практические занятия.

Учебным планом не предусмотрены.

4.3.2. Лабораторные работы.

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы		Примечания
		всего	в том числе на практическую подготовку*	
1	Изготовление стопина и проверка его эксплуатационных характеристик	6	2	
1	Определение дисперсности состава порошков микроскопическим методом	6	4	
1	Определение физико- механических характеристик компонентов пиротехнических составов	6	2	
1	Двойные смеси и их качественные испытания	6	3	
2	Определение прессуемости порошкообразных материалов	6	3	
2	Определение температуры горения составов	6	4	

4.4. Самостоятельная работа обучающихся.

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
1	Спички. Производство спичек. Состав спичечной головки и намазки спичечной коробки. Физико-химические процессы, протекающие при трении головки и намазки. Современная спичка.	10	Устный опрос №1
1	Состав воздуха и его условная формула. Составление уравнений реакций горения нестехиометрических смесей с учетом кислорода воздуха.	10	Письменный опрос №2
1	Динитрамид (ДНА) и его соли. Методы получения. Строение и свойства ДНА. Применение.	9	Письменный опрос №3
1	Способы достижения пирофорных свойств металлических порошков.	10	Устный опрос №4
2	Сухое горючее. Его применение.	10	Письменный опрос №4
2	Эксплозофорные группировки.	9	Устный опрос №5

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
2	ИВВ, БВВ, бризантность и фугасность.	10	Письменный опрос №6

4.5 Примеры вариантов заданий для текущего контроля.

- 1. Какие общие требования предъявляются к компонентам ПС?
 - 1.1. Высокая плотность
 - 1.2. Низкая стоимость
 - 1.3. Наличие отечественной сырьевой базы
 - 1.4. Низкая температура плавления
 - 1.5. Гигроскопичность
- 2. Каким требованиям должны отвечать горючие ПС?
 - 2.1. Большая теплота сгорания
 - 2.2. Большая стандартная энтальпия образования
 - 2.3. Большое значение кислородного эквивалента
 - 2.4. Пирофорность
 - 2.5. Пластичность
- 3. Каким требованиям должны отвечать окислители ПС?
 - 3.1. Высокая теплота разложения
 - 3.2. Большое значение кислородного эквивалента
 - 3.3. Малый коэффициент Демидова
 - 3.4. Слеживаемость
 - 3.5. Большое содержание активного кислорода
- 4. Какую роль выполняют в ПС цементаторы?
 - 4.1. Увеличивают прочность
 - 4.2. Улучшают технологичность
 - 4.3. Увеличивают химическую стойкость
 - 4.4. Уменьшают газовыделение
 - 4.5. Повышают калорийность
- 5. Что такое кислородный эквивалент окислителя?
 - 5.1. Количество окислителя (в граммах), при разложении которого выделяется 1 г кислорода
 - 5.2. Количество окислителя, содержащее 1 г кислорода
 - 5.3. Количество вещества, образующее в процессе горения 1 г кислорода
- 6. Чему равен максимальный кислородный баланс ПС?
 - 6.1. $+\infty$
 - 6.2. +100
 - 6.3. +1
 - 6.4. $\frac{100}{\text{K}\Theta_{\text{OKHGERHTERS}}}$
- 7. Какие условия необходимы для протекания реакции в форме взрыва?
 - 7.1. Экзотермичность
 - 7.2. Высокая скорость реакции
 - 7.3. Высокая плотность

- 7.4. Образование газообразных продуктов
- 7.5. Замкнутый объем
- 8. По какой формуле рассчитывается коэффициент Пиллинга-Бэдворса?

8.1.
$$\beta = K \Theta / \rho$$

8.2.
$$\alpha = \frac{\%_{\text{rop}}}{\text{K}\Im_{\text{rop}}}$$
8.3.
$$\beta = \frac{\frac{\text{MM}_{0\text{K}}\cdot\rho_{\text{Me}}}{\rho_{0\text{K}}\cdot\text{n}\cdot\text{A}_{\text{Me}}}}{\frac{\%_{0\text{K}}/\text{K}\Im_{0\text{K}}}{\frac{\%_{0\text{F}}/\text{K}\Im_{0\text{F}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac{\%_{0\text{F}}/\text{K}}{\frac{\%_{0\text{F}}/\text{K}}}{\frac$$

- 9. Какие из указанных окислителей являются гигроскопичными?
 - 9.1. KNO₃
 - 9.2. NaNO₃
 - 9.3. Ba(NO₃)₂
 - 9.4. KClO₄
 - 9.5. NH₄NO₃
- 10. Какие из перечисленных порошкообразных смесей легко воспламеняются от стопина и горят?
 - 10.1. Нитрат калия + лактоза
 - 10.2. Перхлорат калия + шеллак
 - 10.3. Нитрат натрия + стеариновая кислота
 - 10.4. Сульфат бария + крахмал
 - 10.5. Оксид железа + парафин

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: https://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме зачета.

Зачет предусматривают выборочную проверку освоения предусмотренных элементов компетенций и комплектуются теоретическими вопросами (для проверки знаний).

При сдаче зачета, студент получает три вопроса из перечня вопросов, время подготовки студента к устному ответу - до 30 мин.

Пример варианта вопросов на зачете:

Вариант № 1

- 1. Высокоэнергетические материалы (ВЭМ): понятие, классификация, области применения.
- 2. Недопустимые сочетания компонентов.
- 3. Расчет кислородного эквивалента окислителей и горючих.

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – опенка «зачёт»⁵.

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Гражданская пиротехника : учеб. пособие для вузов / И.А. Абдуллин [и др.]. Казань. : Изд-во КНИТУ. 2013. 315 с.
- 2. Основные процессы и аппараты пиротехнической технологии : справочник / В. П. Чулков [и др.] ; под ред. Н. М. Вареных. Сергиев Посад. : Весь Сергиев Посад, 2009. 528 с.
- 3. Шидловский, А.А. Основы пиротехники : учеб. пособие / А. А. Шидловский. М. : Машиностроение, 1973. 321 с.
- 4. Тишунин, И. В. Вспомогательные системы ракетно-космической техники : учеб. пособие / И. В. Тишунин. М. : Мир, 1970. 359 с.
- 5. Шидловский, А. А. Пиротехника в народном хозяйстве : учеб. пособие / А. А. Шидловский, А. И. Сидоров, Н. А. Силин. М. : Машиностроение, 1978. 236 с.

б) электронные учебные издания⁶:

- 6. Павлов, Б. Д. Определение прессуемости пиротехнических составов и коэффициента уплотнения прессовок: Практикум. / Б. Д. Павлов, Е. П. Коваленко, А. П. Сусла; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра высокоэнергетических процессов. Санкт-Петербург: СПбГТИ(ТУ), 2016. 10 с. // СПбГТИ. Электронная библиотека. URL: http://technolog.bibliotech.ru (дата обращения: 11.05.2021). Режим доступа: для зарегистр. пользователей.
- 7. Павлов, Б. Д. Физико-механические свойства порошкообразных материалов и основные методы их исследования: учебное пособие / Б. Д. Павлов, А. С. Дудырев, Е. П. Коваленко, А. П. Сусла; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический Кафедра высокоэнергетических процессов. Санкт-Петербург университет). СПбГТИ(ТУ), 2019. 72 с. // СПбГТИ. Электронная библиотека. – URL: http://technolog.bibliotech.ru (дата обращения: 11.05.2021). – Режим доступа: для зарегистр. пользователей.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

Для ведения лекционных занятий используется аудитория, оборудованная мультимедиа проектором с ноутбуком, на 40 посадочных мест. Помещения для практических и лабораторных занятий оснащены мебелью, учебно-наглядными пособиями, справочной литературой, имеются

- Вытяжные шкафы,
- Горны для сжигания,.
- Барокамера для исследования процессов горения при разряжении (вакууме),
- Дымовая камера,

⁵ Для промежуточной аттестации в форме зачёта – «зачёт».

⁶ В т.ч. и методические пособия

- Секундомер-таймер СТЦ-1,
- Электронные весы ЕК-600і и ЕК-200і,
- Микроскоп W-AD,
- монитор ТМ 1500 PS,

Вместимость аудиторий 30 посадочных мест. Также на кафедре имеется компьютерный класс с 5 ПК Intel Celeron, с сетевыми фильтрами, 3 ПК Intel Pentium, сетевой концентратор, Монитор 23,5 Philips – 5 шт., монитор АОС 15 - 2 шт). Доступ по локальной сети к единой информационной системе, сайту библиотеки СПбГТИ(ТУ) с системой электронного поиска, электронными библиотеками,доступ к сайту «Роспатента», "Росстата", "Ростехнадзора", Internet. Помещение оснащено мебелью, учебно-наглядными пособиями, справочной литературой.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Введение в технологию энергонасыщенных материалов» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТП СПбГТИ(ТУ) 020-2011. КС УКВД. Виды учебных занятий. Лабораторные работы. Общие требования к организации и проведению занятий.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение⁷.

Microsoft Office (Microsoft Excel);

Libre Office (Libre Office Calc),

MathCad.

10.3. Базы данных и информационные справочные системы.

Справочно-поисковая система «Консультант-Плюс»

⁷ В разделе отображаются комплекты лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства, необходимого для обеспечения дисциплины

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы 8 .

Для ведения лекционных занятий используется аудитория, оборудованная мультимедиа проектором с ноутбуком, на 40 посадочных мест. Помещения для практических и лабораторных занятий оснащены мебелью, учебно-наглядными пособиями, справочной литературой, имеются

• Вытяжные шкафы,

Горны для сжигания,.

- Секундомер-таймер СТЦ-1,
- Электронные весы ЕК-600і и ЕК-200і,
- Микроскоп W-AD,
- монитор ТМ 1500 PS

Вместимость аудиторий 30 посадочных мест,. Также на кафедре имеется компьютерный класс с 5 ПК Intel Celeron, с сетевыми фильтрами, 3 ПК Intel Pentium, сетевой концентратор, Монитор 23,5 Philips – 5 шт., монитор АОС 15 - 2 шт). Доступ по локальной сети к единой информационной системе, сайту библиотеки СПбГТИ(ТУ) с системой электронного поиска, электронными библиотеками,доступ к сайту «Роспатента», "Росстата", "Ростехнадзора", Internet. Помещение оснащено мебелью, учебно-наглядными пособиями, справочной литературой.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

14

⁸ В разделе отображается состав помещений, которые представляют собой учебные аудитории для проведения учебных занятий, предусмотренных образовательной программой по дисциплине, оснащенные оборудованием и техническими средствами обучения.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Введение в технологию энергонасыщенных материалов»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание ⁹	Этап формирования 10
ПК-5	Способен исследовать физико-химические, технологические, взрывчатые и физико-механические свойства различных материалов как компонентов пиротехнических составов	промежуточный

⁹ Жирным шрифтом выделяется та часть компетенции, которая формируется в ходе изучения данной дисциплины (если компетенция осваивается полностью, то фрагменты не выделяются).

¹⁰ Этап формирования компетенции выбирается по п. 2 РПД и учебному плану (начальный – если нет предшествующих дисциплин, итоговый – если нет последующих дисциплин (или компетенция не формируется в ходе практики или Γ ИА), промежуточный - все другие)

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование индикатора	Показатели	Критерий	Уровни сформированности (описание выраженности дескрипторов)		
достижения компетенции	сформированности (дескрипторы)	оценивания	«удовлетворительно» (пороговый)	«хорошо» (средний)	«отлично» (высокий)
ПК-5.2 Способность	Перечисляет понятия энергонасыщенных	Правильные ответы на	Классифицирует энергонасыщенные	Знает требования, предъявляемые к	Грамотно ориентируется в
применять знания ориентирующиеся на	материалов, их классификации, и	вопросы №1-7 к зачёту	материалы	энергонасыщенным материалам и	понятиях адиабатическая
фундаментальные исследования прикладных наук,	требования, предъявляемые к ним; понятия теплоты			изделиям.	температура, удельное газовыделение, теплота сгорания.
необходимых для изучения физико- химических, технологических, и	сгорания, удельное газовыделение; адиабатическая температура горения (3H-1)				1
физико-	Знает о физической и	Правильные	Имеет представление	Знает о причинах	Способен подробно
механических свойств различных материалов как	химической стойкости составов; недопустимые сочетания компонентов;	ответы на вопросы № 8- 11 к зачёту	о процессах, происходящих в энергонасыщенным	недопустимости использования некоторых	описать процессы, происходящие в энергонасыщенных
компонентов пиротехнических составов.	процессы происходящие в состава при хранении; области применения		материалах при хранении, смешивании и их	компонентах друг с другом	материалах при хранении и инициировании
	энергонасыщенных материалов и изделий. (3H-2)		использовании		
	Классифицирует	Правильные	Классифицирует	Рассчитывает основные	Способен
	компоненты ПС; рассчитывает двух и	ответы на вопросы №	компоненты ПС, знает требования,	характеристики компонентов ПС	рассчитывать пиротехнические
	многокомпонентные смеси; составляет бругто уравнения	12-24 к зачету	предъявляемые к ним	ROMITOHERTOB TIC	составы, их основные характеристики,
	реакции горения и условную				прогнозировать
	формулу состава;				продукты сгорания

Код и наименование индикатора	Показатели сформированности (дескрипторы)	Критерий оценивания	Уровни сформированности (описание выраженности дескрипторов)			
достижения компетенции			«удовлетворительно» (пороговый)	«хорошо» (средний)	«отлично» (высокий)	
	рассчитывает содержание общего и активного окислительного агента; калорийность, удельное газовыделение, адиабатическую температуру горения;.(У-1)					
	Подбирает необходимые изделия под конкретные производственные и промышленные цели.(H-1)	Правильные ответы на вопросы № 25-27 к зачету	Слабо ориентируется в конкретных изделиях из энергонасыщенных материалов.	Правильно подбирает изделия из энергонасыщенных материалов под конкретные производственные и промышленные нужды.	Выполняет основные расчёты с энергонасыщенными материалами и зделиями	

- 3. Типовые контрольные задания для проведения промежуточной аттестации
- а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-5:
 - 1. Энергонасыщенные материалы: понятие, классификация, области применения.
 - 2. Требования предъявляемые к энергонасыщенным материалам.
 - 3. Основные требования предъявляемые к компонентам пиротехнических составов.
 - 4. Классификация и назначение компонентов пиротехнических составов.
 - 5. Теплота сгорания. Ее расчет и экспериментальное определение.
 - 6. Удельное газовыделение. Его расчет. Экспериментальное определение.
- 7. Высокоэнергетические материалы (ВЭМ): понятие, классификация, области применения
 - 8. Недопустимые сочетания компонентов.
- 9. Физико-химические процессы, происходящие при хранении пиротехнических составов.
- 10. Склонность веществ к самовозгоранию. Смеси, воспламеняющиеся при контакте с водой и химическими реагентами.
 - 11. Аэрозолеобразователи. Цветопламенные добавки. Газогенераторы.
- 12. Расчет кислородного эквивалента окислителей и горючих, кислородного баланса смеси. Расчет рецептур по уравнению реакции.
- 13. Расчет рецептуры состава с использованием кислородных эквивалентов. Расчет обеспеченности смеси окислителем.
- 14. Составление брутто-уравнения реакции. Расчет условной химической формулы состава.
- 15. Расчет рецептур многокомпонентных составов (составление системы уравнений).
- 16. Кислородсодержащие окислители: основные характеристики, области применения.
- 17. Галогенсодержащие окислители: основные характеристики, области применения.
 - 18. Расчет общего и активного окислительного агента.
 - 19. Классификация и общие свойства горючих.
 - 20. Металлические горючие: основные характеристики, области применения.
 - 21. Неорганические и органические горючие.
 - 22. Роль связующих. Факторы влияющие на прочность составов.
 - 23. Смолы, масла, каучуки и термоэластопласты в роли связующих.
 - 24. Общие принципы расчет адиабатической температуры горения.
- 25. Применение энергонасыщенных материалов в строительстве и при добыче полезных ископаемых.
- 26. Применение энергонасыщенных материалов в ракетно-космической технике, машиностроении и металлургии.
 - 27. Самораспространяющийся высокотемпературный синтез.

При сдаче зачета, студент получает три вопроса из перечня, приведенного выше. Время подготовки студента к устному ответу на вопросы - до 30 мин.

4. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТП СТО СПбГТИ(ТУ) 016-2015. КС УКДВ Порядок проведения зачетов и экзаменов.

По дисциплине промежуточная аттестация проводится в форме зачёта.

Шкала оценивания на зачёте — «зачёт», «незачет». При этом «зачёт» соотносится с пороговым уровнем сформированности компетенции.