Документ подписан простой электронной подписью

Информация о владельце: ФИО: Шевчик Андрей Павлович

Должность: Ректор

Дата подписания: 22.11.2022 15:59:43 Уникальный программный ключ:

476b4264da36714552dc83748d2961662babc012



# МИНОБРНАУКИ РОССИИ федеральное государственное бюджетное образовательноеучреждение высшегообразования «Санкт-Петербургский государственныйтехнологический институт (технический университет)» (СПбГТИ(ТУ))

| УТВЕРЖДАЮ |             |
|-----------|-------------|
| Ректор    | А.П. Шевчик |
| « »       | 2022 г.     |

## Рабочая программа дисциплины МАТЕРИАЛОВЕДЕНИЕ

Научная специальность **2.6.17.** Материаловедение

Подготовка научных и научно-педагогических кадров в аспирантуре

Очная форма обучения

#### ЛИСТ СОГЛАСОВАНИЯ

#### РАЗРАБОТЧИКИ

| Должность, ученое звание     | Подпись | Фамилия, инициалы |
|------------------------------|---------|-------------------|
| доцент кафедры химической    |         | Воронков М.В.     |
| технологии тугоплавких       |         |                   |
| неметаллических и силикатных |         |                   |
| материалов, доцент           |         |                   |

Рабочая программа дисциплины «Материаловедение» рассмотрена и утверждена на заседании кафедрыхимической технологии тугоплавких неметаллических и силикатных материалов

протокол № 10 от 24 января 2022 г.

Зав. кафедрой

И.Б.Пантелеев

#### СОГЛАСОВАНО

| Ответственный за подготовку программы – заведующий кафедрой химической технологии тугоплавких неметаллических и силикатных материалов, профессор | Пантелеев И.Б. |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Начальник отдела аспирантуры и докторантуры                                                                                                      | Еронько О.Н.   |

# СОДЕРЖАНИЕ

| 1. Перечень планируемых результатов освоения дисциплины                  | 4  |   |
|--------------------------------------------------------------------------|----|---|
| 2. Место дисциплины в структуре образовательной программы                | 4  | ŀ |
| 3. Объем дисциплины                                                      | ۷  | 1 |
| 4. Содержание дисциплины                                                 | 5  |   |
| 5.Порядок проведения промежуточной аттестации                            | 6  |   |
| 6. Рекомендуемая литература                                              | 6  |   |
| 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», |    |   |
| необходимых для освоения дисциплины                                      | 9  | ) |
| 8. Методические указания для аспирантов по освоению дисциплины           | 9  | ) |
| 9. Перечень информационных технологий, используемых при осуществлении    |    |   |
| образовательного процесса по дисциплине                                  | 9  | ) |
| 10. Материально-техническое обеспечение дисциплины                       | 10 | ) |
| 11. Особенности освоения дисциплины инвалидами и лицами с ограниченными  |    |   |
| возможностями здоровья                                                   | 10 | ) |
|                                                                          |    |   |

#### 1. Перечень планируемых результатов освоения дисциплины

Цель изучения дисциплины – углубленное изучение наиболее важных и актуальных теоретических и практических вопросов, охватываемых паспортом специальности 2.6.17. Материаловедение, приобретение навыков использования научных методов и средств для решения теоретических и прикладных задач научной специальности, подготовка к сдаче кандидатского экзамена по специальности «Материаловедение».

Задачи изучения дисциплины:

- углубление и расширение теоретических знаний по материаловедению;
- овладение методами и средствами научного исследования в материаловедении;
- систематизация знанийв области материаловедение;
- подготовка к сдаче кандидатского экзамена по материаловедению.

В результате освоения образовательной программы аспирантурыаспирант должен продемонстрировать следующиерезультатыосвоения дисциплины «Материаловедение»:

- способность демонстрировать и применять углубленные знания в профессиональной деятельности в области материаловедения;
- способность адаптировать новое знание в узкопрофессиональной и междисциплинарной деятельности в области материаловедения;
- способность к самостоятельному построению и аргументированному представлению научной гипотезы;
- свободное владение всеми разделами материаловедения, умение ориентироваться в разнообразии методологических подходов.

#### 2. Место дисциплины в структуре образовательной программы

Дисциплина «Материаловедение» относится к образовательному компоненту программы аспирантуры и представляетобязательные элективные дисциплины, направленные на подготовку к сдаче кандидатских экзаменов. Дисциплина изучается на 2 курсе в 3 и 4 семестрах.

Полученные в процессе изучения дисциплины «Материаловедение» знания, умения и навыки могут быть использованы в научно-исследовательской работе аспиранта.

#### 3. Объем дисциплины.

| Вид учебной работы                                                    | Всего,<br>академических часов |
|-----------------------------------------------------------------------|-------------------------------|
| Вид у пеоноп рассты                                                   | Очная форма обучения          |
| Общая трудоемкость дисциплины (зачетных единиц/ академических часов)  | 5/ 180                        |
| Контактная работа с преподавателем:                                   | 40                            |
| Обзорно-установочные лекции и консультации                            | 40                            |
| Самостоятельная работа                                                | 104                           |
| <b>Форма промежуточной аттестации</b> - кандидатский экзамен (4 сем.) | 36                            |

Рабочая программа дисциплины рассчитана на <u>5</u>3ET (<u>180</u> час.), из них около 20% могут составлять аудиторные занятия, включая обзорно-установочные лекции, консультации с преподавателем. Основная часть работы аспиранта является самостоятельной и включает изучение рекомендованной преподавателем литературы, работу с источниками, подготовку к кандидатскому экзамену.

Обзорно-установочные лекции и консультации могут проводиться, в том числе, с использованием дистанционных образовательных технологий, электронного обучения.

#### 4. Содержание дисциплины

## 4.1. Разделы дисциплины и виды занятий

| <b>№</b><br>п/п | Наименование<br>раздела дисциплины                 | Обзорно-<br>установочные<br>лекции,<br>консультации<br>акад.часы | Самостоятельн<br>ая<br>работа,<br>акад. часы |
|-----------------|----------------------------------------------------|------------------------------------------------------------------|----------------------------------------------|
| 1               | Теоретические основы материаловедения              | 12                                                               | 30                                           |
| 2               | Основные свойства материалов и методы исследования | 18                                                               | 50                                           |
|                 | структуры и физических свойств материалов          |                                                                  |                                              |
| 3               | Металлы и сплавы. Неметаллические материалы.       | 10                                                               | 24                                           |
|                 | Композиционные материалы. Наноматериалы и          |                                                                  |                                              |
|                 | нанотехнологии                                     |                                                                  |                                              |

## 4.2.Обзорно-установочные лекции

| №<br>разд.д<br>исц. | Наименование тем обзорно-установочных лекций                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Объем,<br>акад.<br>часы |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1                   | Строение атома и периодическая система элементов Д.И. Менделеева. Электронная структура. Типы межатомных связей в кристаллах. Кристаллическое строение твердых тел. Типы кристаллических решеток металлов и их характеристика. Реальное строение металлических и неметаллических кристаллов. Анизотропия свойств кристаллов. Дефекты кристаллического строения: точечные, линейные, поверхностные и объемные. Дислокационная структура и прочность металлов. Зонная теория твердых тел. Связь физических свойств с поведением электронов. Теплопроводность, электропроводность и электронная теплоемкость металлов. Термоэлектронная эмиссия. Сверхпроводимость.  Электронное строение полупроводников и диэлектриков. Магнитные свойства материалов. Диамагнетизм, парамагнетизм, ферромагнетизм. Агрегатные состояния веществ. Энергетические условия и термодинамика процесса кристаллизации. Самопроизвольная и несамопроизвольная кристаллизация. Форма кристаллических образований. Строение слитка. Полиморфизм. Магнитные превращения. Аморфное состояние металлов. Аморфные сплавы. | 12                      |
| 2                   | Влияние легирования, структуры концентраторов напряжений и масштабного фактора на характеристики механических свойств. Механические свойства, определяемые при динамическом нагружении. Влияние скорости деформирования на характеристики прочности и пластичности. Динамические испытания на изгиб образцов. Ударная вязкость. Методы определения ударной вязкости и ее составляющих. Механические свойства, определяемые при циклическом нагружении. Усталость, диаграммы усталости, предел выносливости. Малоцикловая и многоцикловая усталость. Природа усталостного разрушения. Влияние различных факторов на сопротивление усталости. Испытания на твердость вдавливанием и царапанием. Триботехнические испытания.                                                                                                                                                                                                                                                                                                                                                                    | 18                      |

| №<br>разд.д<br>исц. | Наименование тем обзорно-установочных лекций                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Объем,<br>акад.<br>часы |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3                   | Металлы и сплавы с особыми свойствами. Магнитные материалы. Классификация материалов по магнитным свойствам. Материалы с особыми тепловыми и упругими свойствами. Сплавы с заданными коэффициентом теплового расширения и модулем упругости. Проводниковые и полупроводниковые материалы. Электропроводность твердых тел. Материалы высокой проводимости: проводниковые, припои, сверхпроводники. Сплавы повышенного электросопротивления. Контактные материалы. Полупроводниковые материалы. Строение и свойства. Методы получения сверхчистых материалов. Легирование полупроводников. Классификация и структура полимерных материалов. Молекулярная структура полимеров. Особенности механических свойств полимеров, обусловленные их строением. Релаксационные свойства. Вязкое течение растворов и расплавов полимеров. Типы разрушения полимеров. Влияние внешних факторов на процесс разрушения. Физико-механические, адгезионные, фрикционные, антикоррозионные, диэлектрические свойства полимеров, методы исследования этих свойств. Пластмассы на основе термопластичных и термореактивных полимеров. Методы переработки пластмасс в изделия. Общая классификация композиционных материалов по химической природе компонентов (матрицы и наполнителя) и форме наполнителя (дисперсные, слоистые, волокнистые). Основные виды композитов на основе неорганических и органических (в т.ч. полимерных) материалов: методы изготовления, исследования и испытаний, основные характеристики и современные подходы к их улучшению, области применения. | 10                      |

# 4.3.Самостоятельная работа аспирантов

| №<br>разд.д<br>исц. | Наименование тем для самостоятельной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Объем,<br>акад.<br>часы |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1                   | Структурные изменения в металлах в условиях холодной и горячей пластической деформации. Температура рекристаллизации. Строение металлов после возврата и рекристаллизации. Механизм и стадии процесса рекристаллизации. Условия реализации направленной кристаллизации. Условия термодинамического равновесия.  Эвтектическое и перитектическое превращения. Виды ликвации. Фазовые и структурные превращения в твердом состоянии. Эвтектоидное превращение. Связь между свойствами и типом диаграммы состояния. Фазовые превращения в стали при нагреве и охлаждении. Изотермические и термокинетические диаграммы. | 30                      |

| №<br>разд.д<br>исц. | Наименование тем для самостоятельной работы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Объем,<br>акад.<br>часы |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 2                   | Влияние состава стали на процесс распада аустенита. Межзеренные границы, межзеренная поверхностная энергия. Внутренние напряжения, возникающие из-за упругого «прогибания» кристаллической решетки, сопрягающихся фаз.  Температурные поля и напряженное состояние тел (материалов). Влияние температурной зависимости физико-механических свойств на температурные напряжения. Методы определения термопрочности. Влияние видов термического нагружения на разрушение. Влияние структурных параметров на термопрочность. Термопрочность однофазных неметаллических материалов. Термопрочность композитов с трещиноватой структурой.  Поведение материалов под нагрузкой при нагреве от комнатных температур до температуры рекристаллизации и выше. Ползучесть, диаграммы ползучести, предел ползучести. Теория рекристаллизационной ползучести. Длительная прочность, диаграммы длительной прочности, предел длительной прочности. Механизм хрупкого разрушения при ползучести. Релаксация напряжений, диаграммы релаксации, релаксационная стойкость. Свойства мартенситно-стареющих сталей и области применения. Конструкционные и коррозионностойкие стали. Жаропрочные стали и сплавы. Инструментальные стали. Классификация инструментальных сталей по теплостойкости, структуре и областям применения. Быстрорежущая сталь. Штамповые стали для деформирования в горячем и холодном состоянии. | 50                      |
| 3                   | Технология теплоизоляционных материалов и изделий. Классификация. Способы формирования поровых и волокнистых структур. Основные стадии технологии. Технико-экономическая эффективность применения. Механические свойства композиционных материалов, моделирование на ЭВМ разрушения композиционных материалов с использованием свойств армирующих волокон, объемной доли и свойств матрицы. Механизм разрушения. Основы расчета на прочность изделий из композиционных материалов. Способы компьютерного моделирования состава, структуры, свойств и процесса разрушения композиционных материалов. Области и перспективы применения композиционных материалов. Методы получения наноразмерных функциональных слоев и покрытий. Представление о теории фракталов и ее применении при разработке наноматериалов и наноструктурированных систем.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                      |

#### 5.Порядок проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме кандидатского экзамена в соответствии с избранной специальностью.

Экзамен предусматривают выборочную проверку освоения предусмотренных результатов обучения по дисциплине и комплектуется вопросами, представленными в программе кандидатского экзамена по научной специальности 2.6.17. Материаловедение.

#### 6.Рекомендуемая литература

#### а) печатные издания:

- 1. Шевченко, А.А. Физикохимия и механика композиционных материалов : учеб. пособие для вузов/А.А. Шевченко. Санкт-Петербург : Профессия, 2010. 223 с. ISBN: 978-5-91884-003-0
- 2. Гаршин, А.П. Абразивные материалы и инструменты. Технология производства: учебн. пособие/А.П. Гаршин, С.М. Федотова. СПбГПУ. Санкт-Петербург: Издательство Политехнического университета, 2008. 1009 с.– ISBN 978-5-7422-1853-1
- 3. Вихман, С.В. Физико-химические основы технологии наноструктурированных конструкционных керамических материалов : методические указания к лабораторным работам / С. В. Вихман, О. А. Кожевников. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии тонкой технической керамики. Санкт-Петербург : СПбГТИ(ТУ), 2012. 47 с.
- 4. Брыков, А.С. Химия силикатных и кремнеземсодержащих вяжущих материалов : учебное пособие / А.С. Брыков. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии строительных и специальных вяжущих веществ. Санкт-Петербург : СПбГТИ(ТУ), 2011. 144 с.
- 5. Введение в нанотехнологию: учебник / В.И. Марголин, В.А. Жабрев, Г.Н. Лукьянов, В.А. Тупик. Санкт-Петербург: Лань, 2012. 457 с. ISBN 978-5-8114-1318-8.
- 6. Основы материаловедения, коррозии и технологии материалов: учебное пособие / М.М. Сычев, В.Н. Коробко, Т.В. Лукашова, С.В. Мякин. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра теоретических основ материаловедения. Санкт-Петербург: СПбГТИ(ТУ), 2011. 94 с.
- 7. Основы нанотехнологии: учебник / Н.Т. Кузнецов, В.М. Новоторцев, В.А. Жабрев, В.И. Марголин. Москва: БИНОМ. Лаборатория знаний, 2014. 397 с. ISBN: 978-5-9963-0853-8.

#### б) электронные издания

- 1. Рентгенофазовый анализ порошковых материалов на дифрактометре ДР-02 "РАДИАН": Учебное пособие / А. В. Горюнов, В. И. Зарембо, Г. Э. Франк-Каменецкая, С. О. Шульгин. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра аналитической химии. Санкт-Петербург: СПбГТИ(ТУ), 2012. 47 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 12.01.2021). Режим доступа: для зарегистрир. пользователей.
- 2. Спектральные методы анализа. Практическое руководство : учебное пособие / В. И. Васильева [и др.] ; Под ред.: В. Ф. Селеменева и В. Н. Семенова. Санкт-Петербург ; Москва ; Краснодар : Лань, 2021. 413 с. ISBN 978-5-8114-1638-7 // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com (дата обращения: 12.01.2021). Режим доступа: по подписке.
- 3. Пантелеев, И. Б. Методы математического планирования эксперимента в технологии керамики [Текст]: учебное пособие / И. Б. Пантелеев, С. В. Вихман. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии тонкой технической керамики. Санкт-Петербург: СПбГТИ(ТУ), 2012. 71 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 12.01.2021). Режим доступа: для зарегистрир. пользователей.

- 4. Суворов, С. А. Процессы разрушения, оптимизация свойств и выбор высокотемпературных наноструктурированных материалов. Учебное пособие / С.А. Суворов, В.В. Козлов, Н.В. Арбузова. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии высокотемпературных материалов. Санкт-Петербург: СПбГТИ(ТУ), 2013. 133 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 12.01.2021). Режим доступа: для зарегистрир. пользователей.
- 5. Орданьян, С. С. Проектирование состава, структуры и свойств керамических конструкционных наноматериалов: учебное пособие / С.С. Орданьян, А.Е. Кравчик. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии тонкой технической керамики. Санкт-Петербург: СПбГТИ(ТУ), 2014. 84 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 12.01.2021). Режим доступа: для зарегистрир. пользователей.
- 6. Козлов, В. В. Методы синтеза нанопорошков и наноструктур: методические указания / В.В. Козлов. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии высокотемпературных материалов. Санкт-Петербург: СПбГТИ(ТУ), 2014. 16 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.01.2021). Режим доступа: для зарегистрир. Пользователей.
- 7. Медведева, И. Н. Гармонизованные с европейскими нормами стандарты на цементы : учебное пособие // И.Н. Медведева, В.И. Корнеев, Е.Ю. Алешунина. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии строительных и специальных вяжущих веществ. Санкт-Петербург : СПбГТИ(ТУ), 2010. 35 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.01.2021). Режим доступа: для зарегистрир. пользователей.
- 8. Орданьян, С. С. Теоретические основы управляемого спекания наноструктурных материалов: учебное пособие / С.С. Орданьян, И.Б. Пантелеев. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии тонкой технической керамики. Санкт-Петербург: СПбГТИ(ТУ), 2014. 33 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.01.2021). Режим доступа: для зарегистрир. пользователей.
- 9. Орданьян, С. С. Технология наноструктурированных керамических материалов. Новые керамические инструментальные материалы : учебное пособие / С.С. Орданьян, И.Б. Пантелеев. Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра химической технологии тонкой технической керамики. Санкт-Петербург : СПбГТИ(ТУ), 2014. 86 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 15.01.2021). Режим доступа: для зарегистрир. пользователей

# 7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Библиотека Санкт-Петербургского государственного технологического института (технического университета) университета http://bibl.lti-gti.ru
  - 2. Российская государственная библиотека www.rsl.ru

- 3. Российская национальная библиотека www.nlr.ru
- 4. Библиотека Академии наук www.rasl.ru
- 5. Библиотека по естественным наукам PAH www.benran.ru
- 6. Всероссийский институт научной и технической информации (ВИНИТИ) www.viniti.ru
  - 7. Государственная публичная научно-техническая библиотека www.gpntb.ru
  - 8. Научная электронная библиотека eLIBRARY.RU elibrary.ru
- 9. Реферативная база данных научных публикаций Web of Science webofknowledge.com
- 10. Электронно-библиотечная система "Лань" http://e.lanbook.com

#### 8. Методические указания для аспирантов по освоению дисциплины.

Методические указания для аспирантов по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте Медиа: http://media.technolog.edu.ru

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на оба семестра, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для аспирантов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

В ходе обзорно-установочных лекций преподаватель излагает и разъясняет основные, наиболее сложные понятия темы, а также связанные с ней теоретические и практические проблемы, дает рекомендации на выполнение самостоятельной работы.

В ходе лекций аспирантам рекомендуется:

- вести конспектирование учебного материала;
- обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений или процессов, научные выводы и практические рекомендации по их применению;
  - задавать преподавателю уточняющие вопросы.

Самостоятельная работа — ключевой аспект освоения аспирантом дисциплины «Материаловедение», основывающийся на понимании материала, излагаемого в ходе обзорно-установочных лекций, самостоятельном поиске, подборе и обработке информации. При этом значительную часть необходимых для освоения курса данных необходимо будет найти в научной литературе.

# 9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

#### 9.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций;

взаимодействие с аспирантом посредством электронно-информационной образовательной среды.

#### 9.2. Программное обеспечение.

WindowsXPStarterEdition. (Государственный контракт № 24 от 14.09.2007, срок действия — бессрочно), MicrosoftOffice (MicrosoftExcel): Office 2007 RussianOLPNLAE (Государственный контракт № 24 от 14.09.2007, срок действия — бессрочно), Office Std 2013 Rus OLP NL (Контракт № 02(03)15 от 15.01.2015, срок действия -20 лет), LibreOffice (открытая лицензия), стандартные компьютерные программы, находящиеся в свободном доступе, в частности, Mathcad 14. Professional, Microsoft Excel, ImageJ.

#### 9.3. Информационные справочные системы.

#### Отечественные ресурсы:

- http://www.cnshb.ru/AKDiL/0048/default.shtm;
- www.elibrary.ru;
- www.diss.rsl.ru;
- www.viniti.ru;
- www.chemport.ru;
- www.biblioclub.ru;
- http://www.rusanalytchem.org;
- http://www.anchem.ru;
- http://www.chem.msu.ru.

#### Зарубежные ресурсы:

- www.springerlink.com –полнотекстовой доступ со всех зарегистрированных компьютеров института
- www.reaxys.com полный доступ со всех зарегистрированных компьютеров института
  - www.sciencedirect.com
  - www.chemweb.com
  - www.pubs.acs.org American Chemical Society (ACS)

Глубина полнотекстового доступа - с 1996 года

- www.doaj.org
- www.rsc.org/Publishing/Journals/Index.asp RSC Publishing journals
- www.uspto.gov полный текст патентов США с 1790 года.
- www.ieee.org

#### 10. Материально-техническое обеспечение дисциплины.

Для ведения лекций используется аудитория, оборудованная средствами оргтехники, на 15 посадочных мест.

Материально-техническое обеспечение дисциплины: доступ к фондам учебных пособий, библиотечным фондам с периодическими изданиями по соответствующим темам, наличие компьютеров, подключенных к сети Интернет и оснащенных средствами медиапрезентаций (медиакоммуникаций);

# 11. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014г.