Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 02.11.2023 12:39:16 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Врио проректора по учебной
и методической работе
Б.В. Пекаревский
« 24 » мая 2021 г.

Рабочая программа дисциплины Общая химическая технология

Направление подготовки

22.03.01 Материаловедение и технологии материалов

Направленность программы бакалавриата

«Материаловедение и технологии наноматериалов и наносистем» «Материаловедение и технологии тугоплавких неметаллических материалов»

Квалификация

Бакалавр

Форма обучения

Очная

Факультет химии веществ и материалов Кафедра общей химической технологии и катализа

> Санкт-Петербург 2021

ЛИСТ СОГЛАСОВАНИЯ

Должность	Подпись	Ученое звание, фамилия, инициалы
Заведующий кафедрой		доцент Постнов А.Ю.

Рабочая программа дисциплины «Общая химическая технология» обсуждена на заседании кафедры общей химической технологии и катализа протокол от «13» мая 2021 № 9 Заведующий кафедрой А.Ю. Постнов

Одобрено учебно-методической комиссией факультета Химии веществ и материалов протокол от «20» мая 2021 №8

Председатель С.Г. Изотова

СОГЛАСОВАНО

Руководитель направления подготовки	Н.В. Захарова
«Материаловедение и технологии	
материалов»	
Директор библиотеки	Т.Н. Старостенко
Начальник методического отдела	Т.И. Богданова
учебно-методического управления	
Начальник	С.Н. Денисенко
учебно-методического управления	

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	04
2. Место дисциплины (модуля) в структуре образовательной программы	07
3. Объем дисциплины	07
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	08
4.2. Занятия лекционного типа	08
4.3. Занятия семинарского типа	10
4.3.1. Семинары, практические занятия	10
4.3.2. Лабораторные занятия	10
4.4. Самостоятельная работа	11
5. Перечень учебно-методического обеспечения для самостоятельной работы	
обучающихся по дисциплине	1
6. Фонд оценочных средств для проведения промежуточной аттестации	11
7. Перечень основной и дополнительной учебной литературы, необходимой для	
освоения дисциплины	12
8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
необходимых для освоения дисциплины	13
9. Методические указания для обучающихся по освоению дисциплины	13
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	
10.1. Информационные технологии	13
10.2. Программное обеспечение	13
10.3. Базы данных и информационные справочные системы	14
11. Материально-техническая база, необходимая для осуществления образовательног	o
процесса по дисциплине	14
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	14

Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

В результате для освоения образовательной программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ОПК-1 Способен решать задачи	ОПК-1.16	Знать:
профессиональной деятельности,	Выполнение материальных и тепловых	методики составления материальных и энергетических
применяя методы моделирования,	расчётов химико-технологического	балансов реактора и химико-технологической системы в
математического анализа,	оборудования	целом;
естественнонаучные и		Уметь:
общеинженерные знания		рассчитывать материальные и энергетические балансы
		реактора и химико-технологической системы в целом;
		Владеть:
		Навыками оптимизации структуры материальных и
		энергетических потоков по технико-экономическим
		критериям.
	ОПК-1.17 Моделирование химико-	Знать:
	технологического процесса в	Принципы построения математических моделей
	идеализированных реакторах	идеализированных реакторов;
		Уметь:
		Рассчитывать необходимый объём идеализированного
		реактора;
		Владеть:
		Навыками определения рационального температурного
		режима работы идеализированного реактора.

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ОПК-6 Способен принимать	ОПК-6.2	Знать:
обоснованные технические решения в	Анализ термодинамических характеристик	основные термодинамические характеристики химико-
профессиональной деятельности,	химико-технологического процесса	технологического процесса;
выбирать эффективные и безопасные		Уметь:
технические средства и технологии		рассчитывать термодинамическую константу равновесия;
		Владеть:
		навыками расчёта равновесного состава реакционной
		смеси.
	ОПК-6.3	Знать:
	Определение области протекания химико-	критерии определения области протекания химико-
	технологического процесса	технологического процесса;
	•	Уметь:
		идентифицировать область протекания химико-
		технологического процесса;
		Владеть:
		навыками достижения требуемой области протекания
		химико-технологического процесса.
	ОПК-6.4	Знать:
	Анализ кинетических характеристик	перечень вариабельных кинетических характеристик
	химико-технологического процесса	химико-технологического процесса;
	-	Уметь:
		определять значения кинетических характеристик по
		результатам эксперимента;
		Владеть:
		навыками анализа кинетических характеристик химико-
		технологического процесса.

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения		
компетенции	достижения компетенции	(дескрипторы)		
	ОПК-6.5	Знать:		
	Управление термодинамическими	перечень управляющих параметров химико-		
	характеристиками химико-	технологического процесса, влияющих на величину		
	технологического процесса	термодинамических характеристик;		
		Уметь:		
		изменять значения термодинамических характеристик в		
		требуемом направлении;		
		Владеть:		
		навыками определения и обоснования диапазона		
		управляющих параметров, обеспечивающих заданные		
		показатели эффективности химико-технологического		
		процесса.		
	ОПК-6.6	Знать:		
	Управление скоростью процесса в	перечень управляющих параметров химико-		
	кинетической области	технологического процесса, влияющих на величину		
		наблюдаемой скорости процесса в кинетической области;		
		Уметь:		
		рассчитывать скорость процесса в кинетической области;		
		Владеть:		
		навыками управления скоростью процесса в		
		кинетической области.		
	ОПК-6.7	Знать:		
	Управление скоростью процесса в	перечень управляющих параметров химико-		
	диффузионной области	технологического процесса, влияющих на величину		
		наблюдаемой скорости процесса в диффузионной		
		области;		
		Уметь:		
		рассчитывать скорость процесса в диффузионной		
		области;		
		Владеть:		
		навыками управления скоростью процесса в		
		диффузионной области.		

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
	ОПК-6.8	Знать:
	Важнейшие химические производства	Современное состояние производства серной кислоты,
		аммиака и метанола;
		Уметь:
		Рассчитывать технико-экономические характеристики
		промышленных агрегатов;
		Владеть:
		Навыками построения химико-технологических систем.

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к дисциплинам обязательной части (Б1.О.25) и изучается на 3 курсе в 5 семестре.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин «Неорганическая химия», «Органическая химия», «Математика» и «Информатика». Полученные в процессе изучения дисциплины «Общая химическая технология» знания, умения и навыки могут быть использованы при изучении дисциплин «Технико-экономическое планирование И организация производства», «Автоматизированное проектирование», дисциплин образовательной программы, формируемой участниками образовательных отношений, при прохождении производственной практики, а также при выполнении квалификационной работы

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	4/144
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	78
занятия лекционного типа	36
занятия семинарского типа, в т.ч.	36
семинары, практические занятия	18
лабораторные работы	18
курсовое проектирование (КР или КП)	_
KCP	6
другие виды контактной работы	_
Самостоятельная работа	30
Форма текущего контроля (Кр, реферат, РГР, эссе)	_
Форма промежуточной аттестации(КР, КП, зачет, экзамен)	Экзамен/36

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

		о типа,	Занятия семинарского типа, академ. часы		работа,	этенции	каторы
№ п/п	Наименование раздела дисциплины	Занятия лекционного типа, акад. часы	Семинары и/или практические занятия	Лабораторные работы	Самостоятельная р акад. часы	Формируемые компетенции	Формируемые индикаторы
1.	Материальные и энергетические расчёты	4	12	_	8	ОПК-1	ОПК 1.16
2.	Термодинамика и кинетика химико-технологического процесса	8	-	8	8	ОПК-6	ОПК 6.2–6.7
3	Управление химико- технологическим процессом в идеализированном реакторе	12	_	8	8	ОПК-1	ОПК 1.17
4.	Важнейшие химические производства	12	6	2	6	ОПК-6	ОПК 6.8

4.2. Занятия лекционного типа.

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
1	Материальные и энергетические расчёты Современные тенденции развития химической технологии. Сырьевая и энергетическая базы химической промышленности. Показатели качества протекания химико-технологического процесса (ХТП). Избирательность. Удельные материальные, энергетические и эксплуатационные затраты. Материальные и тепловые балансы как основа для оценки затрат на сырье, топливо и электроэнергию при производстве химических продуктов. Методика составления уравнений материального и теплового балансов реактора.	4	ЛВ

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
2	Термодинамика и кинетика химико- технологического процесса химическое равновесие, расчет равновесных концентраций. Управление состоянием равновесия химико-технологического процесса. Анализ влияния управляющих параметров на	8	ЛВ
	равновесный состав реакционной смеси. Скорость химико-технологического процесса. Лимитирующая стадия и её идентификация. Экспериментальные методы определения кинетических констант. Управление скоростью химико-технологического процесса.		
3	Управление химико-технологическим процессом в идеализированном реакторе. Химические процессы в идеализированных реакторах непрерывного действия (полного смешения, идеального вытеснения). Устойчивость. Управляющие параметры. Расчет химического процесса в потоке полного смешения. Стационарный и нестационарный режимы. Множественность стационарных состояний. Расчет химического процесса в потоке идеального вытеснения. Общие принципы организации обратимых экзо- и эндотермических процессов. Способы регулирования температурного и концентрационного реактора при проведении обратимого экзотермического процесса. Задача оптимизации. Типовые проточные и циркуляционные химико-технологические системы.	12	ЛВ
4	Важнейшие химические производства Производство синтез-газа из различного углеводородного сырья. Основные производства на основе синтез-газа. Производство водорода. Синтез аммиака. Контактное производство серной кислоты. Производство азотной кислоты и минеральных удобрений. Производство алюминия. Экологические аспекты современных химических производств и функционирования топливно-энергетического комплекса. Водородная энергетика.		ЛВ

4.3. Занятия семинарского типа.

4.3.1. Семинары, практические занятия.

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
1	Расчёт теоретических расходных коэффициентов по сырью и энергии	2	
1	Расчёт показателей эффективности протекания химико-технологического процесса	2	ПТ
1	Расчёт материальных и тепловых балансов химического реактора с различными температурными режимами при проведении единичных и сопряжённых реакций	8	ПТ, Технологическая игра
4	Сравнение эффективности гетерогенно- каталитического процесса при использовании различных катализаторов	4	ПТ
4	Современные химико-технологические схемы производства аммиака	2	

4.3.2. Лабораторные занятия.

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
2	Исследование влияния управляющих параметров на изменение равновесного состава реакционной смеси	4	КтСм
2	Исследование влияния управляющих параметров на наблюдаемую скорость XTП	4	КтСм
3	Исследование влияния температуры на производительность изотермического реактора в режимах полного смешения и идеального вытеснения	4	КтСм
3	Исследование влияния температуры на входе в реактор на производительность адиабатического реактора в режимах полного смешения и идеального вытеснения	4	КтСм
4	Энерготехнологическое комбинирование	2	Технологическ ая игра

4.4. Самостоятельная работа обучающихся.

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
1	Расчёт материального энергетического баланса	8	Проверка
	для многомаршрутного процесса		решения
2	Расчёт равновесного состава реакционной смеси	8	Проверка
	и определение вероятных значений		решения
	управляющих параметров, обеспечивающих		
	заданную производительность при реализации		
	многомаршрутного процесса		
3	Расчёт каскада реакторов полного смешения при	8	Проверка
	проведении жидкофазного процесса		решения
4	Технологии синтеза метанола при низком	3	Тестирование с
	давлении		использованием
			LMS Moodle
4	Технологии получения синтетических моторных	3	Тестирование с
	топлив		использованием
			LMS Moodle

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме экзамена.

Экзамен предусматривают выборочную проверку освоения предусмотренных элементов компетенций и комплектуются вопросами (заданиями) двух видов: теоретические задания (для проверки знаний) и расчётно-аналитические задания (для проверки умений и навыков).

При сдаче экзамена обучающийся получает пять вопросов из банка вопросов (время на выполнение 10 минут) и расчётно-аналитическую задачу из перечня задач (время на выполнение 35 минут). Экзамен проводится в компьютерном классе с использованием виртуальной среды обучения LMS Moodle.

Пример варианта вопросов на экзамене:

Вариант № 1

- 1. Определение «Лимитирующая стадия процесса»
- 2. Как изменяется равновесная степень превращения ключевого компонента при увеличении давления для реакции, идущей с увеличением объёма газообразных реагентов?
- 3. Как изменяется скорость обратимой реакции по мере её протекания?
- 4. Как изменяется температура в реакторе при проведении эндотермической обратимой реакции в политермическом температурном режиме?
- 5. Какие катализаторы используются для процесса паровой конверсии природного газа?

Пример расчётно-аналитического задания на экзамене:

Вариант № 1

Выбрать температурный режим работы реактора, обеспечивающий заданную производительность по целевому продукту при проведении процесса паровой конверсии природного газа в трубчатом реакторе на катализаторе ГИАП-18 при известных значениях управляющих параметров. Проанализировать изменение показателей эффективности протекания процесса в случае изменения давления в реакторе.

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – оценка «удовлетворительно».

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Общая химическая технология: учебник для химико-технологических специальностей вузов: В 2-х частях. Часть 1. Теоретические основы химической технологии / Под редакцией И.П. Мухленова. 5-е изд., стер. Москва: Альянс, 2009. 256 с. ISBN 978-5-903034-78-9
- 2. Общая химическая технология: учебник для химико-технологических специальностей вузов: В 2-х частях. Часть 2. Важнейшие химические производства / Под редакцией И.П. Мухленова. 5-е изд., стер. Москва: Альянс, 2009. 263 с. ISBN 978-5-903034-79-6
- 3. Общая химическая технология: учебное пособие для 4-го курса заочной формы обучения / Е.А. Власов, А.Ю. Постнов, С.А. Лаврищева; под редакцией Е.А. Власова; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра технологии катализаторов. Санкт-Петербург: СПбГТИ(ТУ), 2009. 140 с.

б) электронные учебные издания:

- 4. Общая химическая технология. Основные концепции проектирования химикотехнологических систем: учебник для вузов по химико-технологическим направлениям подготовки и специальностям / И.М. Кузнецова [и др.]; под редакцией Х.Э. Харлампиди. 2-е изд., перераб. Санкт-Петербург [и др.]: Лань, 2021. 384 с. ISBN 978-5-8114-1479-6 // Лань: электронно-библиотечная система. URL: https://e.lanbook.com (дата обращения: 01.04.2021). Режим доступа: по подписке.
- Обиная химическая технология. Методология проектирования технологических процессов: учебник ДЛЯ вузов ПО химико-технологическим направлениям подготовки и специальностям / И.М. Кузнецова [и др.]; под редакцией Х.Э. Харлампиди. - 2-е изд., перераб. – Санкт-Петербург [и др.]: Лань, 2021. – 448 с. – ISBN 978-5-8114-1478-9 // Лань: электронно-библиотечная система. – URL: https://e.lanbook.com (дата обращения: 01.04.2021). – Режим доступа: по подписке.
- 6. Общая химическая технология: учебное пособие для 4-го курса заочной формы обучения / Е.А. Власов, А.Ю. Постнов, С.А. Лаврищева; под редакцией Е.А. Власова; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра технологии катализаторов. Санкт-Петербург: СПбГТИ(ТУ), 2009. 140 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech.ru (дата обращения: 01.04.2021). Режим доступа: для зарегистрированных пользователей.

7. Технологическая игра: энерготехнологическое комбинирование на примере мобильной установки получения синтез-газа: учебное пособие / А.Ю. Постнов, О.А. Черемисина; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра общей химической технологии и катализа. — Санкт-Петербург: СПбГТИ(ТУ), 2019. — 43 с. // СПбГТИ. Электронная библиотека. — URL: https://technolog.bibliotech.ru (дата обращения: 21.04.2021). - Режим доступа: для зарегистрированных пользователей.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

Учебный план, РПД и учебно-методические материалы: http://media.technolog.edu.ru

электронно-библиотечные системы:

«Электронный читальный зал – БиблиоТех» https://technolog.bibliotech.ru/; ЭБС «Лань» https://e.lanbook.com/books/.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Общая химическая технология» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 020-2011. КС УКДВ. Виды учебных занятий. Лабораторные занятия. Общие требования к организации и проведению.

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

СТП СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок проведения зачетов и экзаменов.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций;

взаимодействие с обучающимися с использованием виртуальной среды обучения LMS Moodle.

10.2. Программное обеспечение.

Пакеты прикладных программ стандартного набора (LibreOffice, MathCAD);

10.3. Базы данных и информационные справочные системы.

Справочно-поисковая система «Консультант-Плюс» База данных REAXYS. www.reaxys.com

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Кафедра Общей химической технологии и катализа оснащена необходимым научноисследовательским оборудованием, измерительными и вычислительными комплексами и другим материально-техническим обеспечением, необходимым для полноценного лабораторных работ, существует возможность использования оборудования Инжинирингового Центра и Лаборатории каталитических технологий. Компьютеры кафедры (аудитории 205, 209, 210) соединены в локальную вычислительную сеть с выходом в Интернет через отдельный сервер, подключенный к сети института.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Общая химическая технология»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание	Этап формирования
ОПК-1	Способен решать задачи профессиональной деятельности, применяя методы моделирования, математического анализа, естественнонаучные и общеинженерные знания	промежуточный
ОПК-6	Способен принимать обоснованные технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии	промежуточный

1. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование индикатора достижения	Показатели сформированности (дескрипторы)	Критерий оценивания	(описа	Уровни сформированност ание выраженности дескри	
компетенции			«удовлетворительно» (пороговый	«хорошо» (средний)	«отлично» (высокий)
ОПК-1.16 Выполнение материальных и тепловых расчётов химико- технологического оборудования	Знает методики составления материальных и энергетических балансов реактора и химикотехнологической системы в целом	Ответы на вопросы №1-12	Формулирует законы, лежащие в основе составления материальных и энергетических балансов	Записывает формулы для расчёта материальных и энергетических потоков, состава смесей, производительности, расходных коэффициентов	Знает методики составления материальных и энергетических балансов реактора и химикотехнологической системы в целом (ЗН-7);
	Умеет рассчитывать материальные и энергетические балансы реактора и химикотехнологической системы в целом	Ответы на вопросы №1-12	Рассчитывает и материальные и энергетические потоки, но совершает незначительные ошибки	Составляет материальный и энергетический баланс реактора	Умеет рассчитывать материальные и энергетические балансы реактора и химико-технологической системы в целом (У-7);
	Владеет навыками оптимизации структуры материальных и энергетических потоков по технико-экономическим критериям	Ответы на вопросы №1-12	Выполняет процедуру определения управляющих технологических параметров, обеспечивающих заданную производительность	Выполняет процедуру определения рационального температурного режима работы реактора	Владеет навыками оптимизации структуры материальных и энергетических потоков по технико-экономическим критериям (H-7).
ОПК-1.17 Моделирование химико- технологического процесса в идеализированных реакторах	Знает принципы построения математических моделей идеализированных реакторов	Ответы на вопросы №13-34	Перечисляет положения, лежащие в основе моделей идеализированных реакторов	Записывает формулы для расчёта объёма идеализированных реакторов	Записывает системы уравнений, лежащих в основе моделирования идеализированных реакторов в различных температурных режимах

	Умеет рассчитывать необходимый объём идеализированного реактора	Ответы на вопросы №13-34	закономерности изменения объёма идеализированного реактора в различных условиях при проведении необратимой модельной реакции	Показывает закономерности изменения объёма идеализированного реактора в различных условиях при проведении обратимой модельной реакции	Показывает закономерности изменения объёма идеализированного реактора в различных условиях при использовании реальных кинетических уравнений
	Владеет навыками определения рационального температурного режима работы идеализированного реактора	Ответы на вопросы №13-34	Рассчитывает объём идеализированного реактора	Выбирает рациональный температурный диапазон работы реактора по результатам расчёта	Рассчитывает объём многосекционного идеализированного реактора
ОПК-6.2 Анализ термодинамических характеристик химико- технологического процесса	Знает основные термодинамические характеристики химико-технологического процесса	Ответы на вопросы №35-44	Перечисляет основные термодинамические характеристики химико-технологического процесса	Приводит примеры взаимосвязи между основными термодинамическими характеристиками химико-технологического процесса	Правильно выбирает методику расчёта основных термодинамических характеристик химикотехнологического процесса
	Умеет рассчитывать термодинамическую константу равновесия	Ответы на вопросы №35-44	Рассчитывает термодинамическую константу равновесия по известным полиномиальным уравнениям	Составляет уравнение для расчёта термодинамической константы равновесия	Выбирает корректное уравнение для расчёта термодинамической константы равновесия
	Владеет навыками расчёта равновесного состава реакционной смеси	Ответы на вопросы №35-44	Рассчитывает равновесный состав реакционной смеси для единичной реакции при заданных значениях управляющих параметров	Рассчитывает равновесный состав реакционной смеси для единичной реакции в широком диапазоне значений управляющих параметров	Рассчитывает равновесный состав реакционной смеси для многомаршрутного процесса в широком диапазоне значений управляющих параметров

ОПК-6.3	Знает критерии определения	Ответы на	Перечисляет	Правильно выбирает	Приводит примеры
Определение области	области протекания химико-	вопросы №51,57-	перечень	методологию	реализации процессов в
протекания химико-	технологического процесса	59,67-70	управляющих	определения области	различных областях
технологического	•		параметров,	протекания химико-	протекания
процесса			позволяющих	технологического	
продосов			идентифицировать	процесса	
			область протекания		
			химико-		
			технологического		
			процесса		
	Умеет идентифицировать	Ответы на	По характеру	Объясняет выбор	Анализирует тенденции
	область протекания химико-	вопросы №51,57-	изменения скорости	методологии	в изменении области
	технологического процесса	59,67-70	процесса определяет	определения области	протекания химико-
			область протекания	протекания химико-	технологического
			химико-	технологического	процесса
			технологического	процесса	
			процесса		
	Владеет навыками изменения	Ответы на	Составляет алгоритм	Обосновывает	Расчётным путем
	области протекания химико-	вопросы №51,57-	перевода химико-	алгоритм перевода	показывает
	технологического процесса	59,67-70	технологического	химико-	возможность перевода
			процесса из	технологического	химико-
			диффузионной	процесса из	технологического
			области в	диффузионной области	процесса из
			кинетическую	в кинетическую	диффузионной области
			-	-	в кинетическую
ОПК-6.4	Знает перечень вариабильных	Ответы на	Перечисляет	Правильно выбирает	Приводит примеры
Анализ кинетических	кинетических характеристик	вопросы №94-104	кинетические	требуемые	кинетических
характеристик химико-	химико-технологического		характеристики	кинетические	показателей для
технологического	процесса		химико-	показатели химико-	конкретных химико-
процесса			технологического	технологического	технологических
F - 1,555			процесса	процесса	процессов

	Умеет определять значения кинетических характеристик по результатам эксперимента	Ответы на вопросы №94-104	По результатам обработки экспериментальных данных определяет значение энергии активации химической реакции	По результатам обработки экспериментальных данных определяет значение энергии активации химической реакции и предэкспоненциального множителя уравнения Аррениуса	По результатам обработки экспериментальных данных определяет значение порядка реакции, энергии активации химической реакции и предэкспоненциального множителя уравнения Аррениуса
	Владеет навыками анализа кинетических характеристик химико-технологического процесса	Ответы на вопросы №94-104	Правильно выбирает критерии анализа кинетических характеристик химико-технологического процесса	Показывает закономерности изменения кинетических характеристик химикотехнологического процесса	Демонстрирует способность выбора рациональных характеристик химикотехнологического процесса
ОПК-6.5 Управление термодинамическими характеристиками химико- технологического	Знает перечень управляющих параметров химико- технологического процесса, влияющих на величину термодинамических характеристик	Ответы на вопросы №35-49, 88-93	Перечисляет кимико- технологического процесса, влияющие на величину термодинамических характеристик	Правильно выбирает рациональный диапазон изменения управляющих параметров	Приводит конкретные примеры влияния управляющих параметров на величину термодинамических характеристик
процесса	Умеет изменять значения термодинамических характеристик в требуемом направлении	Ответы на вопросы №35-49, 88-93	Анализирует влияние управляющих параметров на равновесный состав реакционной смеси, но допускает незначительные ошибки	Без ошибок анализирует влияние управляющих параметров на равновесный состав реакционной смеси	Анализирует влияние управляющих параметров на равновесный состав реакционной смеси при реализации многомаршрутного процесса

	Владеет навыками определения и обоснования диапазона управляющих параметров, обеспечивающих заданные показатели эффективности химико-технологического процесса	Ответы вопросы №35 88-93	на 5-49,	Решает задачу поиска равновесного состава реакционной смеси при фиксированном значении управляющих параметров	Решает задачу поиска равновесного состава реакционной смеси в заданном диапазоне изменений значений управляющих параметров	Обосновывает рекомендуемый диапазон изменения управляющих параметров
ОПК-6.6 Управление скоростью процесса в кинетической области	Знает перечень управляющих параметров химикотехнологического процесса, влияющих на величину наблюдаемой скорости процесса в кинетической области	Ответы вопросы № 55,57,67-87	на №50-	Перечисляет параметры химико- технологического процесса, влияющие на величину наблюдаемой скорости процесса в кинетической области	Правильно выбирает рациональный диапазон изменения управляющих параметров	Приводит конкретные примеры влияния управляющих параметров на величину наблюдаемой скорости процесса в кинетической области
	Умеет рассчитывать скорость процесса в кинетической области	Ответы вопросы 55,57,67-87	на №50-	Рассчитывает наблюдаемую скорость процесса в кинетической области, но допускает незначительные ошибки	Без ошибок рассчитывает наблюдаемую скорость процесса в кинетической области	Рассчитывает величину дифференциальной селективности при реализации многомаршрутного процесса
	Владеет навыками управления скоростью процесса в кинетической области	Ответы вопросы 5 55,57,67-87	на №50-	Анализирует влияние управляющих параметров на величину наблюдаемой скорости процесса в кинетической области, но допускает незначительные ошибки	Без ошибок анализирует влияние управляющих параметров на величину наблюдаемой скорости процесса в кинетической области	Анализирует влияние управляющих параметров на величину дифференциальной селективности при реализации многомаршрутного процесса

ОПК-6.7	Знает перечень управляющих параметров химико-	Ответы на вопросы №56,58-	Перечисляет параметры химико-	Правильно выбирает рациональный	Приводит конкретные примеры влияния
Управление скоростью процесса в диффузионной области	технологического процесса, влияющих на величину наблюдаемой скорости процесса в диффузионной области	66,105-111	технологического процесса, влияющие на величину наблюдаемой скорости процесса в диффузионной	диапазон изменения управляющих параметров	управляющих параметров на величину наблюдаемой скорости процесса в диффузионной области
	Умеет рассчитывать скорость процесса в диффузионной области	Ответы на вопросы №56,58- 66,105-111	области Рассчитывает наблюдаемую скорость процесса в диффузионной области, но допускает незначительные ошибки	Без ошибок рассчитывает наблюдаемую скорость процесса в диффузионной области	Рассчитывает величину времени полной обработки материала в гетерогенном процессе
	Владеет навыками управления скоростью процесса в диффузионной области	Ответы на вопросы №56,58- 66,105-111	Анализирует влияние управляющих параметров на величину наблюдаемой скорости процесса в диффузионной области, но допускает незначительные ошибки	Без ошибок анализирует влияние управляющих параметров на величину наблюдаемой скорости процесса в диффузионной области	Анализирует влияние управляющих параметров на величину дифференциальной селективности при реализации многомаршрутного процесса
ОПК-6.8 Важнейшие химические производства	Знает современное состояние производства серной кислоты, аммиака и метанола	Ответы на вопросы №112- 132 к экзамену	Рассказывает о характерных особенностях промышленных агрегатов	Перечисляет конструктивные характеристики промышленных агрегатов	Приводит технико- экономические показатели промышленных агрегатов
	Умеет рассчитывать технико- экономические характеристики промышленных агрегатов	Ответы на вопросы №112- 132 к экзамену	Рассчитывает технико- экономические характеристики промышленных агрегатов, но допускает ошибки	Правильно определяет технико-экономические характеристики промышленных агрегатов	Прогнозирует закономерности в изменении технико-экономических показателей промышленных агрегатов

Владеет навыками построения	Ответы на	Демонстрирует	Показывает	Составляет	схемы
химико-технологических систем	вопросы №112-	преимущества и	способность	промышленных	
	132 к экзамену	недостатки химико-	построения химико-	агрегатов	
		технологических	технологических		
		систем различной	систем с применением		
		архитектуры	модульного принципа		

Шкала оценивания соответствует СТО СПбГТИ(ТУ):

По дисциплине промежуточная аттестация проводится в форме защиты курсовой работы, экзамена, шкала оценивания — балльная («отлично», «хорошо», «удовлетворительно», «неудовлетворительно»), в форме зачёта, шкала оценивания «зачёт» и «незачёт», защита курсовой работы- шкала бальная.

3. Типовые контрольные задания для проведения промежуточной аттестации

- а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ОПК-1:
- 1. Закон сохранения массы вещества
- 2. Закон сохранения энергии
- 3. Определение «Практический расходный коэффициент».
- 4. Как рассчитать тепловой эффект реакции?
- 5. Как рассчитать удельный тепловой эффект реакции по компоненту?
- 6. Определение «Интенсивность работы реактора»
- 7. Определение «Интегральная селективность».
- 8. Определение «Выход продукта».
- 9. Определение «Теоретический расходный коэффициент».
- 10. Определение «Степень превращения вещества»
- 11. Микрокинетические управляющие параметры химико-технологического процесса
- 12. Макрокинетические управляющие параметры химико-технологического процесса
- 13. Как изменяется температура в реакторе при проведении экзотермической обратимой реакции в адиабатическом температурном режиме?
- 14. Как изменяется температура в реакторе при проведении эндотермической обратимой реакции в адиабатическом температурном режиме
- 15. Как изменяется температура в реакторе при проведении эндотермической обратимой реакции в политермическом температурном режиме
- 16. Как изменяется температура в реакторе при проведении эндотермической обратимой реакции в изотермическом температурном режиме
- 17. Как изменяется температура в реакторе при проведении экзотермической обратимой реакции в политермическом температурном режиме
- 18. Как изменяется температура в реакторе при проведении экзотермической обратимой реакции в изотермическом температурном режиме
- 19. Написать уравнение для расчёта мольной доли компонента, если известна начальная мольная доля компонента и степень превращения ключевого компонента
- 20. Как рассчитать практический расходный коэффициент по сырью, если известен теоретический расходный коэффициент по ключевому компоненту, мольная доля ключевого компонента в сырье и его степень превращения
- 21. Как рассчитать производительность по ключевому компоненту, если известно начальное количество ключевого компонента и его степень превращения
- 22. При известных значениях величин материальных и энергетических потоков определить необходимость изменения температурного режима работы реактора для обеспечения требуемого температурного диапазона его функционирования
- 23. Определение «Нестационарное состояние»
- 24. Определение «Стационарное состояние»
- 25. Основные положения идеализированной модели идеального вытеснения
- 26. Основные положения идеализированной модели полного смешения
- 27. Уравнение материального баланса реактора идеального вытеснения
- 28. Уравнение материального баланса реактора полного смешения
- 29. Уравнение теплового баланса реактора идеального вытеснения в изотермическом температурном режиме

- 30. Уравнение теплового баланса реактора полного смешения в изотермическом температурном режиме
- 31. Уравнение теплового баланса реактора идеального вытеснения в адиабатическом температурном режиме
- 32. Уравнение теплового баланса реактора полного смешения в адиабатическом температурном режиме
- 33. Уравнение теплового баланса реактора идеального вытеснения в политермическом температурном режиме
- 34. Уравнение теплового баланса реактора полного смешения в политермическом температурном режиме

б) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ОПК-6:

- 35. Как изменяется равновесная температура при увеличении давления для экзотермической обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 36. Как изменяется равновесная температура при увеличении давления для экзотермической обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 37. Как изменяется равновесная температура при увеличении давления для экзотермической обратимой реакции, идущей без изменения объёма газообразных реагентов
- 38. Как изменяется равновесная температура при увеличении давления для эндотермической обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 39. Как изменяется равновесная температура при увеличении давления для эндотермической обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 40. Как изменяется равновесная температура при увеличении давления для эндотермической обратимой реакции, идущей без изменения объёма газообразных реагентов
- 41. Как изменяется равновесная температура по мере протекания экзотермической обратимой реакции?
- 42. Как изменяется термодинамическая константа равновесия при увеличении температуры для экзотермической реакции?
- 43. Как изменяется термодинамическая константа равновесия при увеличении температуры для эндотермической реакции?
- 44. Как рассчитать величину равновесной температуры?
- 45. От каких управляющих параметров зависит термодинамическая константа равновесия
- 46. Уравнение закона Гесса
- 47. Уравнение изобары Вант-Гоффа
- 48. Используя известные термодинамические характеристики реакции рассчитать величину термодинамической константы равновесия для заданной температуры
- 49. Рассчитать равновесный состав реакционной смеси при известных значениях температуры, давления и исходного состава реакционной смеси
- 50. Определение «Энергия активации».
- 51. Определение «Лимитирующая стадия процесса»
- 52. Определение «Катализатор».
- 53. Определение «Скорость химической реакции».
- 54. Физический смысл предэкспоненциального множителя в уравнении Аррениуса

- 55. Уравнение Аррениуса
- 56. Уравнение первого закона Фика.
- 57. Как зависит скорость процесса от температуры в кинетической области?
- 58. Как зависит скорость процесса от температуры в переходной области?
- 59. Как зависит скорость процесса от температуры в диффузионной области?
- 60. Как влияет размер обрабатываемого твёрдого материала на скорость гетерогенного процесса в кинетической области?
- 61. Как влияет размер обрабатываемого твёрдого материала на скорость гетерогенного процесса во внешнедиффузионной области?
- 62. Как влияет размер обрабатываемого твёрдого материала на скорость гетерогенного процесса во внутридиффузионной области?
- 63. Области протекания процесса в системе «газ-твёрдое»
- 64. Области протекания процесса в системе «газ-жидкость»
- 65. Области протекания процесса в системе «жидкость-твёрдое»
- 66. Области протекания гетерогенно-каталитического процесса
- 67. По известной зависимости скорости химико-технологического процесса от температуры определить область протекания химико-технологического процесса
- 68. По характеру изменения скорости химико-технологического процесса от размера гранул катализатора определить область протекания химико-технологического процесса
- 69. По характеру изменения скорости химико-технологического процесса от расхода реакционной определить область протекания химико-технологического процесса
- 70. Для известного процесса предложить технологические приёмы, обеспечивающие приближение к кинетической области для процессов, протекающих в диффузионной области
- 71. Как изменяется оптимальная температура по мере протекания обратимой экзотермической обратимой реакции?
- 72. Определение «Оптимальная температура процесса»
- 73. Как изменяется скорость обратимой реакции по мере её протекания?
- 74. Как изменяется оптимальная температура по мере протекания обратимой экзотермической обратимой реакции
- 75. Как изменяется оптимальная температура при увеличении давления для экзотермической обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 76. Как изменяется оптимальная температура при увеличении давления для экзотермической обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 77. Как изменяется оптимальная температура при увеличении давления для экзотермической обратимой реакции, идущей без изменения объёма газообразных реагентов
- 78. Определение «Дифференциальная селективность».
- 79. Как изменяется скорость необратимой бимолекулярной реакции второго порядка при увеличении начальной мольной доли ключевого компонента
- 80. Как изменяется скорость необратимой мономолекулярной реакции первого порядка при увеличении начальной мольной доли исходного регента
- 81. Как изменяется скорость обратимой реакции по мере её протекания
- 82. Как изменяется скорость необратимой реакции по мере её протекания
- 83. Уравнение скорости необратимой реакции
- 84. Как рассчитать величину оптимальной температуры процесса?
- 85. Определение «Дифференциальная селективность».
- 86. По известным экспериментальным данным определить энергию активации, предэкспоненциальный множитель и порядок реакции

- 87. По результатам анализа кинетических характеристик предложить перечень управляющих параметров процесса, обеспечивающих достижение заданных показателей эффективности его протекания
- 88. Влияние температуры на равновесие эндотермической обратимой реакции
- 89. Влияние температуры на равновесие экзотермической обратимой реакции
- 90. Влияние давления на равновесие обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 91. Влияние давления на равновесие обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 92. Влияние давления на равновесие обратимой реакции, идущей без изменения объёма газообразных реагентов
- 93. Для известного химико-технологического процесса рассчитать предельную температуру, при которой может быть достигнута требуемая производительность по продукту при известном давлении, расходе реакционной смеси и исходном составе.
- 94. Параметры управления химико-технологическим процессом, определяющие величину скорости в кинетической области
- 95. Влияние температуры на скорость обратимой экзотермической реакции.
- 96. Влияние температуры на скорость необратимой экзотермической реакции
- 97. Влияние температуры на скорость необратимой эндотермической реакции
- 98. Влияние температуры на скорость обратимой эндотермической реакции.
- 99. Влияние давления на скорость обратимой реакции, идущей с увеличением объёма газообразных реагентов
- 100. Влияние давления на скорость обратимой реакции, идущей с уменьшением объёма газообразных реагентов
- 101. Влияние температуры на величину дифференциальной селективности при проведении параллельных реакций
- 102. Влияние мольной доли ключевого компонента на величину дифференциальной селективности при проведении параллельных реакций
- 103. Влияние давления на скорость обратимой реакции, идущей без изменения объёма газообразных реагентов
- 104. Рассчитать наблюдаемую скорость химико-технологического процесса по известному кинетическому уравнению при фиксированном значении управляющих параметров
- 105. Предложить и расчетным путём подтвердить рациональный диапазон изменения температуры, в котором обеспечивается необходимое увеличение скорости процесса
- 106. Параметры управления химико-технологическим процессом, определяющие величину скорости в диффузионной области
- 107. Какое значение имеет порядок реакции по компоненту в диффузионной области?
- 108. Как перевести процесс из внешнедиффузионной области в кинетическую?
- 109. Как перевести процесс из внутридиффузионной области в кинетическую?
- 110. Для известного гетерогенного процесса в системе «газ-твёрдое» рассчитать значение скорости процесса, протекающего в диффузионной области
- 111. Предложить и расчетным путём подтвердить рациональный диапазон изменения расхода газа и размера обрабатывамых твёрдых частиц, в котором обеспечивается необходимое увеличение скорости процесса
- 112. Для известного химико-технологического процесса рассчитать необходимый объём идеализированного реактора
- 113. Для известного химико-технологического процесса установить рациональный температурный режим работы реактора
- 114. Стадии производства серной кислоты контактным способом
- 115. Сырьё для производства серной кислоты
- 116. Технологические параметры контактного окисления диоксида серы

- 117. Катализаторы окисления диоксида серы
- 118. Сырьё для производства аммиака
- 119. Стадии производства аммиака
- 120. Технологические параметры конверсии природного газа в производстве аммиака
- 121. Технологические параметры конверсии СО
- 122. Технологические параметры синтеза аммиака
- 123. Катализаторы синтеза аммиака
- 124. Сырьё для производства метанола
- 125. Стадии производства метанола
- 126. Технологические параметры конверсии природного газа в производстве метанола
- 127. Технологические параметры синтеза метанола
- 128. Катализаторы синтеза метанола
- 129. При известных показателях функционирования рассчитать приведённую себестоимость продукции
- 130. Для известного химико-технологического процесса показать преимущество секционирования рабочей зоны с промежуточным теплообменом
- 131. Для известного химико-технологического процесса показать преимущество секционирования рабочей зоны с промежуточным вводом байпаса
- 132. Для известного химико-технологического процесса показать преимущество применения циклической схемы производства

При сдаче экзамена обучающийся получает пять вопросов из банка вопросов (время на выполнение 10 минут) и расчётно-аналитическую задачу из перечня задач (время на выполнение 35 минут). Экзамен проводится в компьютерном классе с использованием виртуальной среды обучения LMS Moodle.

5. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТП СТО СПбГТИ(ТУ) 016-2015. КС УКВД Порядок проведения зачетов и экзаменов.