Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 10.09.2021 00:46:36 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный технологический институт (технический университет)» (СПбГТИ(ТУ))

УТВЕРЖДАІ	Ю
Проректор по	научной работе
	А.В.Гарабаджиу
«»	2017г.

Рабочая программа дисциплины МАТЕРИАЛОВЕДЕНИЕ

Направление подготовки

22.06.01 – Технологии материалов

Направленность программы аспирантуры

Материаловедение

Квалификация

Исследователь. Преподаватель-исследователь.

Форма обучения

Очная

Санкт-Петербург

2017

СОДЕРЖАНИЕ

1 Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	3
2 Место дисциплины в структуре образовательной программы	
3 Объем дисциплины	5
4 Содержание дисциплины	
4.1 Разделы дисциплины и виды занятий	
4.2 Занятия лекционного типа	6
4.3 Занятия семинарского типа (семинары, практические занятия)	10
4.4 Самостоятельная работа обучающихся	
5 Перечень учебно-методического обеспечения для самостоятельной работы	
обучающихся по дисциплине	13
6 Фонд оценочных средств для проведения промежуточной аттестации	13
7 Перечень основной и дополнительной учебной литературы, необходимой для освоен	ИЯ
дисциплины	14
8 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»,	
необходимых для освоения дисциплины	15
9 Методические указания для обучающихся по освоению дисциплины	15
10 Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	16
10.1 Информационные технологии	16
10.2 Программное обеспечение	16
12 Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	16
Приложения:	
1 Фонд оценочных средств для проведения промежуточной аттестации по дисциплине	
«Материаловедение»	17

1 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения образовательной программы аспирантуры обучающийся

должен овладеть следующими результатами обучения по дисциплине:

Коды	Результаты освоения ООП	Перечень планируемых		
компетенции	(содержание компетенций)	результатов обучения по		
компетенции	(содержание компетенции)	дисциплине		
ОПК-2	способность и готовность	Уметь:		
OHK-2	разрабатывать и выпускать			
		- разрабатывать и выпускать		
	технологическую документацию на	технологическую документацию		
	перспективные материалы, новые	на перспективные материалы,		
	изделия и средства технического	новые изделия и средства		
	контроля качества выпускаемой	технического контроля качества		
	продукции	выпускаемой продукции		
ОПК-5	способность и готовность	Знать:		
	использовать на практике	- теоретические основы		
	интегрированные знания	материаловедения, металлы,		
	естественнонаучных, общих	сплавы, композиционные		
	профессионально-ориентирующих и	материалы		
	специальных дисциплин для	Уметь:		
	понимания проблем развития	- использовать на практике		
	материаловедения, умение выдвигать	интегрированные знания		
	и реализовывать на практике новые	дисциплин для понимания		
	высокоэффективные технологии	проблем развития		
		материаловедения.		
ОПК-9	способность и готовность	Уметь:		
	разрабатывать технические задания и	-разрабатывать технические		
	программы проведения расчетно-	задания и программы проведения		
	теоретических и экспериментальных	расчетно-теоретических и		
	работ	экспериментальных работ.		
ОПК-10	способность выбирать приборы,	Знать:		
	датчики и оборудование для	-типовые приборы, датчики и		
	проведения экспериментов и	оборудование для проведения		
	регистрации их результатов	экспериментов и регистрации их		
	por no spudant and postyrization	результатов.		
		Уметь:		
		- выбирать приборы, датчики и		
		оборудование для проведения		
		экспериментов и регистрации их		
		результатов.		
ОПК-13	способность и готовность	Владеть:		
	участвовать в сертификации	методами сертификация,		
	материалов, полуфабрикатов,	стандартизация и унификация,		
	изделий и технологических	контроля качества материалов и		
	процессов их изготовления	процессов.		
ОПК-14	способность и готовность	Владеть:		
	оценивать инвестиционные риски	методами эффективного		
	при реализации инновационных	применения материалов с учетом		
	материаловедческих и	1 -		
	материаловед ческих и	экономичности, долговечности,		

ОПК-15	конструкторско-технологических проектов и внедрении перспективных материалов и технологий способность и готовность разрабатывать мероприятия по реализации разработанных проектов и программ	безопасности и экологической чистоты Уметь: -организовывать мероприятия по реализации разработанных проектов и программ
ОПК-16	способность и готовность организовывать работы по совершенствованию, модернизации, унификации выпускаемых изделий, их элементов, разрабатывать проекты стандартов и сертификатов, проводить сертификацию материалов, технологических процессов и оборудования, участвовать в мероприятиях по созданию системы качества	Владеть: -навыками сертификации, стандартизации и унификации, контроля качества материалов и процессов.
ПК-1	способность исследовать взаимосвязь состав-структура-свойства для новых и перспективных материалов	Знать: -основные свойства материалов и методы исследования структуры и физических свойств материалов. Владеть: -методами исследования состава и структуры материалов
ПК-2	способность использовать методы моделирования и оптимизации для оценки и прогнозирования свойств материалов	Знать: - методы моделирования и оптимизации для оценки и прогнозирования свойств материалов. Уметь: -использовать методы моделирования и оптимизации для оценки и прогнозирования свойств материалов.

2 Место дисциплины в структуре образовательной программы

Дисциплина относится к обязательным дисциплинам вариативной части (Б1.В.01) и изучается на 3 курсе.

Изучение дисциплины опирается на знания, умения и навыки, приобретенные аспирантами в ходе обучения в специалитете или в бакалавриате и магистратуре. Полученные знания необходимы аспирантам при подготовке, выполнении и защите диссертационной работы и при решении научно-исследовательских, проектно-конструкторских, производственно-технологических, организационно-управленческих задач в будущей профессиональной деятельности.

Настоящая рабочая программа по направленности «Материаловедение» отражает современное состояние данной отрасли науки и включает ее важнейшие разделы, знание которых необходимо высококвалифицированному специалисту.

Полученные в процессе изучения дисциплины «Материаловедение» знания, умения и навыки могут быть использованы в научно-исследовательской работе аспиранта и при выполнении научно-квалификационной работы (диссертации).

3 Объем дисциплины

Ριμι γιαδικού παδοπτι	Всего, академических часов
Вид учебной работы	Очная форма обучения
Общая трудоемкость дисциплины	5/ 180
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	78
занятия лекционного типа	39
занятия семинарского типа, в т.ч. семинары, практические занятия	39
KCP	-
другие виды контактной работы	-
Самостоятельная работа	66
Форма текущего контроля (Кр, реферат, РГР, эссе)	реферат
Форма промежуточной аттестации (зачет, зачет с оценкой, экзамен)	экзамен

4 Содержание дисциплины

4.1 Разделы дисциплины и виды занятий

№ п/п	Наименование раздела дисциплины	Занятия лекционного типа, акад. часы	Занятия семинарского типа, академ. часы (семинары и/или практические занятия)	Самостоятельная работа, акад. часы	Формируемые компетенции
5 ce	местр				
1.	Теоретические основы материаловедения.	8	8	10	ОПК-5, ПК-2, ПК-4
2.	Основные свойства материалов и методы исследования структуры и физических свойств материалов.	8	8	10	ОПК-9, ОПК-10, ПК-1
3.	Металлы и сплавы.	6	6	8	ОПК-5

	Итого за семестр	22	22	28	
6 ce	местр				
4.	Полимерные и композиционные	6	6	13	ОПК-5
	материалы.				
5.	Сертификация, стандартизация и	4	4	10	ОПК-13,
	унификация, контроль качества				ОПК-16,
	материалов и процессов				ОПК-2
6.	Эффективность применения материалов с	7	7	15	ОПК-14,
	учетом экономичности, долговечности,				ОПК-15
	безопасности и экологической чистоты.				
	Итого за семестр	17	17	38	
	Bcero	39	39	66	

4.2 Занятия лекционного типа

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	Теоретические основы материаловедения Строение атома и периодическая система элементов Д.И. Менделеева. Электронная структура. Типы межатомных связей в кристаллах. Кристаллическое строение твердых тел. Типы кристаллических решеток металлов и их характеристика. Реальное строение металлических и неметаллических кристаллов. Анизотропия свойств кристаллов. Дефекты кристаллического строения: точечные, линейные, поверхностные и объемные. Дислокационная структура и прочность металлов. Процессы самоорганизации дислокационной и фрактальной структур материалов с позиций синергетики. Зонная теория твердых тел. Связь физических свойств с поведением электронов. Теплопроводность, электропроводность и электронная теплоемкость металлов. Термоэлектронная эмиссия. Сверхпроводимость.	4	
	Электронное строение полупроводников и диэлектриков. Магнитные свойства материалов. Диамагнетизм, парамагнетизм, ферромагнетизм. Агрегатные состояния веществ. Энергетические условия и термодинамика процесса кристаллизации. Самопроизвольная и несамопроизвольная кристаллизация. Форма кристаллических образований. Строение слитка. Полиморфизм. Магнитные превращения.	4	

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
2	Основные свойства материалов и методы исследования структуры и физических свойств материалов Плоское и объемное напряженные состояния. Плоская деформация. Концентрация напряжений. Остаточные напряжения, определение, классификация. Модуль упругости и его зависимость от кристаллической структуры материала. Упругое последствие, упругий гистерезис, внутреннее трение. Пластическая деформация и деформационное упрочнение. Влияние границ зерен на пластическую деформацию поликристаллов. Сверхпластичность. Влияние пластической деформации на структуру и свойства материалов. Механизм упрочнения. Деформационное упрочнение. Упрочнение твердых растворов при взаимодействии дислокаций с примесями внедрения. Дисперсионное твердение. Значение механических характеристик в материаловедении. Механические свойства, определяемые при статическом нагружении. Испытания на растяжение, сжатие, изгиб, кручение, трещиностойкость.	4	
	Влияние легирования, структуры концентраторов напряжений и масштабного фактора на характеристики механических свойств. Механические свойства, определяемые при динамическом нагружении. Влияние скорости деформирования на характеристики прочности и пластичности. Динамические испытания на изгиб образцов. Ударная вязкость. Методы определения ударной вязкости и ее составляющих. Механические свойства, определяемые при циклическом нагружении. Усталость, диаграммы усталости, предел выносливости. Малоцикловая и многоцикловая усталость. Природа усталостного разрушения. Влияние различных факторов на сопротивление усталости. Испытания на твердость вдавливанием и царапанием. Триботехнические испытания. Моделирование свойств материалов.	4	

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад.	Инновационная форма
3	Металлы и сплавы Металлы и сплавы с особыми свойствами. Магнитные материалы. Классификация материалов по магнитным свойствам. Материалы с особыми тепловыми и упругими свойствами. Сплавы с заданными коэффициентом теплового расширения и модулем упругости. Проводниковые и полупроводниковые материалы. Электропроводность твердых тел. Материалы высокой проводимости: проводниковые, припои, сверхпроводники. Сплавы повышенного электросопротивления. Контактные материалы. Полупроводниковые материалы. Строение и свойства. Методы получения сверхчистых материалов. Легирование полупроводников.	<u>часы</u> 6	
4	Полимерные и композиционные материалы Классификация и структура полимерных материалов. Молекулярная структура полимеров. Особенности механических свойств полимеров, обусловленные их строением. Релаксационные свойства. Вязкое течение растворов и расплавов полимеров. Типы разрушения полимеров. Влияние внешних факторов на процесс разрушения. Физико-механические, адгезионные, фрикционные, антикоррозионные, диэлектрические свойства полимеров, методы исследования этих свойств. Пластмассы на основе термопластичных и термореактивных полимеров. Методы переработки пластмасс в изделия.	3	
	Общая классификация композиционных материалов по химической природе компонентов (матрицы и наполнителя) и форме наполнителя (дисперсные, слоистые, волокнистые). Основные виды композитов на основе неорганических и органических (в т.ч. полимерных) материалов: методы изготовления, исследования и испытаний, основные характеристики и современные подходы к их улучшению, области применения.	3	

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
5	Сертификация, стандартизация и унификация, контроль качества материалов и процессов Обязательная и добровольная сертификация, правила и порядок проведения сертификации. Органы по сертификации и испытательные лаборатории. Основные положения национальной системы стандартизации: виды и категории стандартов, порядок разработки стандартов, органы и службы стандартизации, государственный контроль и надзор за соблюдением требований государственных стандартов. Порядок разработки, согласования и утверждения стандартов и ТУ. Унификация и контроль качества материалов и процессов.	4	
6	Эффективность применения материалов с учетом экономичности, долговечности, безопасности и экологической чистоты Экономический эффект от рационального выбора и применения материалов. Сравнительные данные стоимости углеродистых сталей и сплавов, цветных металлов и сплавов, неметаллических материалов и области их эффективного применения	2	Интерактивная форма проведения занятий. Разбор конкретных ситуаций.
	Повышение надежности, долговечности и безопасности изделий путем применения новых материалов, обладающих уникальными физикомеханическими, технологическими и эксплуатационными свойствами, а также экологической чистотой. Выполнение требований нормативно-технической документации. Программа мероприятий по реализации проекта производства нового вида материалов.	5	

4.3 Занятия семинарского типа (семинары, практические занятия)

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
1	Теоретические основы материаловедения Структурные изменения в металлах в условиях холодной и горячей пластической деформации. Температура рекристаллизации. Строение металлов после возврата и рекристаллизации. Механизм и стадии процесса рекристаллизации. Условия реализации направленной кристаллизации. Условия термодинамического равновесия. Определение системы, фазы, структуры. Смеси, химические соединения, твердые растворы, промежуточные фазы. Правило фаз. Основные типы диаграмм состояния двойных и тройных систем и методы их построения.	4	Интерактивные формы проведения занятий. Разбор конкретных ситуаций.
	Эвтектическое и перитектическое превращения. Виды ликвации. Фазовые и структурные превращения в твердом состоянии. Эвтектоидное превращение. Связь между свойствами и типом диаграммы состояния. Фазовые превращения в стале при нагреве и охлаждении. Изотермические и термокинетические диаграммы. Влияние состава стали на процесс распада аустенита. Полиморфизм. Мартенситное превращение, механизм и кинетика. Межзеренные границы, межзеренная поверхностная энергия. Внутренние напряжения, возникающие из-за упругого «прогибания» кристаллической решетки, сопрягающихся фаз. Использование диффузионных и мартенситных превращений для направленного изменения свойств материалов.	4	
2	Основные свойства материалов и методы исследования структуры и физических свойств материалов Классификация реологических моделей. Теории прочности. Теория предельного стояния. Дефекты Гриффитса. Основные положения механики хрупкого разрушения. Энергетический метод. Устойчивость роста хрупких трещин. Концепция квазиупругого разрушения. Оценка технической прочности и вязкости разрушения некоторых материалов. Температурные поля и напряженное состояние тел (материалов). Влияние температурной зависимости физико-механических свойств на температурные напряжения. Методы определения термопрочности. Влияние видов термического нагружения на разрушение. Влияние структурных параметров на		Интерактивные формы проведения занятий.

№ раздела	Наименование темы	Объем, акад.	Инновационная
дисциплины	и краткое содержание занятия	часы	форма
	термопрочность. Термопрочность однофазных		
	неметаллических материалов. Термопрочность		
	композитов с трещиноватой структурой.		
	Термопрочность гетерофазных неметаллических	4	
	материалов. Термопрочность композиций с		
	функционально изменяемым составом.		
	Термопрочность анизотропных тел. Способы		
	повышения термопрочности неметаллических		
	материалов. Поведение материалов под нагрузкой		
	при нагреве от комнатных температур до		
	температуры рекристаллизации и выше.		
	Ползучесть, диаграммы ползучести, предел		
	ползучести. Теория рекристаллизационной		
	ползучести. Длительная прочность, диаграммы		
	длительной прочности, предел длительной		
	прочности. Механизм хрупкого разрушения при		
	ползучести. Релаксация напряжений, диаграммы		
	релаксации, релаксационная стойкость.		
2	M		TI
3	<u>Металлы и сплавы</u>	6	Интерактивные
	Конструкционные углеродистые и легированные		формы
	стали. Требования, предъявляемые к		проведения
	конструкционным сталям. Классификация		занятий.
	углеродистых сталей по качеству, структуре и областям применения. Влияние легирующих		Мультимедийн
	областям применения. Влияние легирующих компонентов и примесей на дислокационную		ые средства представления
	структуру и свойства сталей. Принципы		представления
	легирования. Мартенситное превращение. Влияние		визуализации.
	легирующих элементов на кинетику фазовых		визуштизации.
	превращений и особенности термической		
	обработки. Свойства мартенситно-стареющих		
	сталей и области применения. Конструкционные и		
	коррозионностойкие стали. Жаропрочные стали и		
	сплавы. Инструментальные стали. Классификация		
	инструментальных сталей по теплостойкости,		
	структуре и областям применения. Быстрорежущая		
	сталь. Штамповые стали для деформирования в		
	горячем и холодном состоянии.	_	
4	Полимерные и композиционные материалы	3	Интерактивные
	Технология высокотемпературных		формы
	конструкционных и композиционных материалов.		проведения
	Основные виды, стадии технологий,		занятий.
	перспективные области применения. Технология		Мультимедийн
	теплоизоляционных материалов и изделий.		ые средства
	Классификация. Способы формирования поровых и		представления
	волокнистых структур. Основные стадии технологии. Технико-экономическая		И
	эффективность применения.		визуализации.
	оффективноств применения.		
			J

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	Композиционные материалы с нуль-мерными и одномерными наполнителями. Эвтектические композиционные материалы. Композиционные материалы на неметаллической основе. Механические свойства композиционных материалов. Механизм разрушения. Основы расчета на прочность изделий из композиционных материалов. Способы компьютерного моделирования состава, структуры, свойств и процесса разрушения композиционных материалов. Области и перспективы применения композиционных материалов.	3	
5	Сертификация, стандартизация и унификация, контроль качества материалов и процессов Технологическая документация на перспективные материалы, новые изделия и средства технического контроля качества выпускаемой продукции.	4	
6	Эффективность применения материалов с учетом экономичности, долговечности, безопасности и экологической чистоты Технические задания и программы проведения расчетно-теоретических и экспериментальных работ.	4	Интерактивные формы проведения занятий. Компьютерные симуляции.
	Изучение кейсов по рациональному выбору материалов в зависимости от области применения изделия.	3	

4.4 Самостоятельная работа обучающихся

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
1	Аморфные материалы .	10	Опрос
2	Механические свойства наноматериалов.	12	
3	Сверхпрочные и особо сверхпрочные стали.	10	
4	Полимерные наноматериалы. Полимеры для 3D печати. 4D материалы	12	
5	Представление о теории фракталов и ее применении при разработке наноматериалов и наноструктурированных систем.	10	

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
6	Типовые приборы, датчики и оборудование для проведения экспериментов и регистрации их результатов.	12	

Темы рефератов:

- 1. Особопрочные сплавы.
- 2. Сплавы с памятью формы.
- 3. Сверхпластичность и сверхпластичные сплавы.
- 4. Неметаллические материалы с высокой твердостью (алмаз, карбиды, корунд и т.д.).
- 5. Композиционные материалы.
- 6. Наноматериалы.
- 7. Наноструктурированные углеродные материалы: фуллерены, нанотрубки, графен.

5 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ).

6 Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме экзамена.

К сдаче экзамена допускаются аспиранты, выполнившие все формы текущего контроля.

Экзамен предусматривает выборочную проверку освоения предусмотренных элементов компетенций и комплектуется вопросами. При сдаче экзамена аспирант получает три вопроса из перечня вопросов, время подготовки аспиранта к устному ответу - до 30 мин.

Пример вариант вопросов на экзамене:

	Вариант № 1	
1.	Дефекты кристаллического строения: точечные, линейные, поверхностные и объемные.	
2.	Полупроводниковые материалы, строение и свойства.	
4.	Экономический эффект от рационального выбора и применения материалов.	

Фонд оценочных средств для проведения промежуточной аттестации приведён в Приложении 1.

7 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная литература:

- 1. А.Б. Романов, М.В. Крашенинникова, М.М. Сычев, В.Н. Коробко. Основы метрологии, стандартизации, сертификации и контроля качества. Учебное пособие для студентов заочной формы обучения. СПБ.: СПбГТИ(ТУ), 2015г. 142с.
- 2. М.М. Сычев, В.Н. Коробко, Т.В. Лукашова С.В. Мякин. Материаловедение: Учебное пособие. СПБ.: СПбГТИ(ТУ), 2013. 65с.
- 3. М.М. СЫЧЕВ, В.Н. КОРОБКО, С.В. МЯКИН, В.В. БАХМЕТЬЕВ, С.П. БОГДАНОВ Материаловедение. Учебное пособие для студентов заочной формы обучения специальности 151.000.00 Технологические машины и оборудование. СПБ.: СПбГТИ(ТУ), 2013. 155с.
- 4. Сычев М.М., Коробко В.Н., Бахметьев В.В., Мякин С.В., Гринева С.И., Корсаков В.Г., Нечипоренко А.П., Гузь А.В., Мошников В.А. Лабораторный практикум по дисциплине «Материаловедение и технологии современных и перспективных материалов». Учебное пособие. СПБ.: СПбГТИ(ТУ), 2013. 161с.
- 5. Сычев М.М. Кислотно-основные характеристики поверхности твердых тел и управление свойствами материалов и композитов /М.М. Сычев, Т.С. Минакова, Ю.Г. Слижов, О.А. Шилова// Санкт-Петербург: Химиздат, 2016. 271 с. ISBN 978-5-93808-265-6
- 6. Колесов, С.Н. Материаловедение и технология конструкционных материалов./С.Н. Колесов, Н.С. Колесов. М.: «Высшая школа», 2007. 535 с.
- 7. Технология конструкционных материалов: учебное пособие для вузов /под ред. Шатерина М.А. М.: «Политехника», 2005. 560 с.
- 8. Материаловедение и технология металлов: учебное пособие для вузов / М.Г. Карпман, Г.П. Фитисов, В.М. Матюнин. М.: «Высшая школа», 2007. 862 с.
- 9. Технология конструкционных материалов: учебное пособие для студентов заочной формы обучения специальности «Менеджмент высоких технологий» / В.Н. Коробко [и др.]; СПб.: СПбГТИ(ТУ), 2010. 100 с.
- 10. Шевченко, А. А. Физикохимия и механика композиционных материалов: учебное пособие для вузов по направлению подготовки специалистов 150500 "Материаловедение, технологии материалов и покрытий" по спец. 150502 "Конструирование и производство изделий из композиционных материалов"/ А. А. Шевченко. СПб.: «Профессия», 2010. 223 с.
- 11. Солнцев, Ю.П. Технология конструкционных материалов: учебник для вузов. [Электронный ресурс] / Солнцев Ю.П., Ермаков Б.С., Пирайнен В.Ю. // СПб.: ХИМИЗДАТ, 2006 г. 503с. Режим доступа: www.ibooks.ru
- 12. Матухин, В. Л. Физика твердого тела: учеб. пособие / В. Л. Матухин, В. Л. Ермаков. СПб.; М.; Краснодар: Лань, 2010. 218 с.

б) дополнительная литература:

- 1. Основы технологии тугоплавких неметаллических и силикатных материалов : учеб. пособие для вузов / А. П. Зубехин [и др.]. М.: Картэк, 2010. –307 с.
- 2. Суворов, С.А. Научные принципы технологии огнеупоров : учебное пособие / С.А. Суворов, В.В. Козлов, СПбГТИ(ТУ) СПб.: 2009 177с.
- 3. Брыков, А.С. Химия силикатных и кремнеземсодержащих вяжущих материалов: учебное пособие / А. С. Брыков. СПбГТИ(ТУ), 2011. 146 с.
- 4. Пантелеев, И. Б. Химическая технология тонкой и строительной керамики: учебное пособие / И. Б. Пантелеев. СПб.: СПбГТИ(ТУ), 2012.

- 5. Елисеев, А. А. Функциональные наноматериалы: учеб. пособие для вузов / А. А. Елисеев, А. В. Лукашин. М.: Физматлит, 2010. 452 с.
- 6. Марголин, В.И. Введение в нанотехнологию: учебник / В.И. Марголин, В.А. Жабрев, Г.Н. Лукьянов, В.А. Тупик. СПб. : Лань, 2012. 464 с.
- 7. Кузнецов, Н.Т. Основы нанотехнологии: учебник / Н.Т. Кузнецов, В.Н. Новоторцев, В.А. Жабрев, В.И. Марголин. М. : БИНОМ. Лаборатория знаний, 2014. 397 с.
- 8. Туркин, И.А. Проблемно-целевое проектирование научного эксперимента в материаловедении высокотемпературных наноструктурированных материалов и изделий. Методические указания / И.А. Туркин, С.А. Суворов. СПб. : СПбГТИ(ТУ), 2014. 20 с.
 - 9. Журнал "Неорганические материалы".
 - 10. Журнал "Известия СПбГТИ(ТУ)".
 - 11. Журнал «Физика и химия стекла».

8 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

– база данных www.POLPRED.com

(ежедневное обновление – единая лента новостей и аналитики на русском языке из 600 источников);

- электронно-библиотечная система: "БИБЛИОТЕХ" г. Москва http://bibliotech.ru;
- отечественные электронные библиотечные ресурсы:

http://www.cnshb.ru/AKDiL/0048/default.shtm

www.elibrary.ru

www.diss.rsl.ru

www.viniti.ru

www.chemport.ru

www.biblioclub.ru

http://www.rusanalytchem.org

http://www.anchem.ru

http://www.chem.msu.ru

– зарубежные электронные библиотечные ресурсы:

www.springerlink.com

www.reaxys.com

www.chemweb.com

www.pubs.acs.org

www.doaj.org

www.rsc.org/Publishing

RSC Publishing journals

www.uspto.gov

www.ieee.org

9 Методические указания для обучающихся по освоению дисциплины

Все виды занятий по дисциплине «Материаловедение» проводятся в соответствии с требованиями следующих стандартов:

- -СТП СПбГТИ 040-2002. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;
- -СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.
- -СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.
- -СТО СПбГТИ 016-2015. КС УКДВ. Порядок организации и проведения зачетов и экзаменов.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для обучающихся является:

- плановость в организации учебной работы;
- серьезное отношение к изучению материала;
- постоянный самоконтроль.

На занятия аспирант должен приходить, имея багаж знаний и вопросов по уже изученному материалу.

10 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

10.1 Информационные технологии

Обучение по дисциплине ведется с применением различных образовательных и информационно-телекоммуникационных технологий — аудиторные занятия проводятся в виде лекций с использованием ПК и компьютерного проектора. Используемые инструментальные и программные средства: презентации, электронные учебные материалы на CD и в Интернет, электронные рассылки по E-mail. Лекции сопровождаются компьютерными презентациями и демонстрациями натурных образцов природного сырья и керамических изделий. Для повышения наглядности лекционного материала используется большое количество иллюстративного материала в виде таблиц, схем, рисунков.

10.2 Программное обеспечение

Офисный пакет LibreOffice, антивирус Kaspersky Lab Endpoint Security версия 10.х.

11 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Для проведения занятий по дисциплине «Материаловедение», предусмотренной учебным планом подготовки аспирантов, имеется необходимая материально-техническая база, соответствующая действующим санитарным и противопожарным правилам и нормам:

- лекционная аудитория, оснащенная мультимедийными проекторами;
- специализированные компьютерные классы с подключенным к ним периферийным устройством и оборудованием;
- аппаратурное и программное обеспечение (и соответствующие методические материалы) для проведения самостоятельной работы по дисциплине.

12 Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014г.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Материаловедение»

1 Перечень компетенций и этапов их формирования

Компетенции				
Индекс	Формулировка	Этап формирования		
ОПК-2	способность и готовность разрабатывать и выпускать технологическую документацию на перспективные материалы, новые изделия и средства технического контроля качества выпускаемой продукции	промежуточный		
ОПК-5	способность и готовность использовать на практике интегрированные знания естественнонаучных, общих профессионально-ориентирующих и специальных дисциплин для понимания проблем развития материаловедения, умение выдвигать и реализовывать на практике новые высокоэффективные технологии	Промежуточный		
ОПК-9	способность и готовность разрабатывать технические задания и программы проведения расчетно-теоретических и экспериментальных работ	Промежуточный		
ОПК-10	способность выбирать приборы, датчики и оборудование для проведения экспериментов и регистрации их результатов	Промежуточный		
ОПК-13	способность и готовность участвовать в сертификации материалов, полуфабрикатов, изделий и технологических процессов их изготовления	Промежуточный		
ОПК-14	способность и готовность оценивать инвестиционные риски при реализации инновационных материаловедческих и конструкторско-технологических проектов и внедрении перспективных материалов и технологий	Промежуточный		
ОПК-15	способность и готовность разрабатывать мероприятия по реализации разработанных проектов и программ	Промежуточный		
ОПК-16	способность и готовность организовывать работы по совершенствованию, модернизации, унификации выпускаемых изделий, их элементов, разрабатывать проекты стандартов и сертификатов, проводить сертификацию материалов, технологических процессов и оборудования, участвовать в мероприятиях по созданию системы качества	Промежуточный		

ПК-1	способность исследовать взаимосвязь состав-структура-	Промежуточный
	свойства для новых и перспективных материалов	
ПК-2	способность использовать методы моделирования и	Промежуточный
	оптимизации для оценки и прогнозирования свойств	
	материалов	

2 Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания.

Показатели оценки результатов освоения дисциплины	Планируемые результаты	Критерий оценивания	Компетенции
Освоение раздела № 1	Знает - теоретические основы материаловедения.	Правильные ответы на вопросы №1-10 к экзамену	ОПК-5
Освоение раздела №2	Умеет -разрабатывать технические задания и программы проведения расчетно- теоретических и экспериментальных работ	Правильные ответы на вопросы №11-20 к экзамену	ОПК-9
	Знает -типовые приборы, датчики и оборудование для проведения экспериментов и регистрации их результатов. Умеет - выбирать приборы, датчики и оборудование для проведения экспериментов и регистрации их	Правильные ответы на вопросы к экзамену №17-20 к экзамену	ОПК-10
	Знает -основные свойства материалов и методы исследования структуры и физических свойств материалов. Владеет -методами исследования состава и структуры материалов.	Правильные ответы на вопросы №11-20 к экзамену	ПК-1

Показатели оценки результатов освоения дисциплины	Планируемые результаты	Критерий оценивания	Компетенции
A. Z	Знает - методы моделирования и оптимизации для оценки и прогнозирования свойств материалов.	Правильный ответ на вопрос №21 к экзамену	ПК-2
Освоение раздела № 3	Знает -теоретические основы материаловедения, металлы, сплавы, композиционные материалы. Умеет -использовать на практике интегрированные знания дисциплин для понимания проблем развития материаловедения	Правильные ответы на вопросы №22-29 к экзамену	ОПК-5
Освоение раздела №4	Знает -теоретические основы материаловедения, металлы, сплавы, композиционные материалы. Умеет -использовать на практике интегрированные знания дисциплин для понимания проблем развития материаловедения.	Правильные ответы на вопросы №30-35 к экзамену	ОПК-5
Освоение раздела № 5	Умеет - разрабатывать и выпускать технологическую документацию на перспективные материалы, новые изделия и средства технического контроля качества выпускаемой продукции	Правильные ответы на вопросы №36-39 к экзамену	ОПК-2

Показатели оценки результатов освоения дисциплины	Планируемые результаты	Критерий оценивания	Компетенции
диоциплипы	Владеет -методами сертификация, стандартизация и унификация, контроля качества материалов и процессов.	Правильные ответы на вопросы №36-38 к экзамену	ОПК-13
	Владеет -навыками сертификации, стандартизации и унификации, контроля качества материалов и процессов.	Правильные ответы на вопросы №36-39 к экзамену	ОПК-16
Освоение раздела № 6	Владеет -методами эффективного применения материалов с учетом экономичности, долговечности, безопасности и экологической чистоты.	Правильные ответы на вопросы №40-42 к экзамену	ОПК-14
	Умеет -организовывать мероприятия по реализации разработанных проектов и программ.	Правильные ответы на вопросы №40-42 к экзамену	ОПК-15

Шкала оценивания соответствует СТО СПбГТИ(ТУ): промежуточная аттестация по дисциплине проводится в форме экзамена, шкала оценивания – балльная.

3 Типовые контрольные задания для проведения промежуточной аттестации

Примерные вопросы для проведения экзамена:

- 1. Кристаллическое строение твердых тел. Типы кристаллических решеток металлов и их характеристика.
- 2. Дефекты кристаллического строения: точечные, линейные, поверхностные и объемные.
 - 3. Зонная теория твердых тел, связь физических свойств с поведением электронов.
- 4. Магнитные свойства материалов, диамагнетизм, парамагнетизм, ферромагнетизм.
 - 5. Форма кристаллических образований, строение слитка. Полиморфизм.
 - 6. Магнитные превращения. Аморфное состояние веществ.
- 7. Условия термодинамического равновесия. Определение системы, фазы, структуры.
 - 8. Эвтектическое и перитектическое превращения. Виды ликвации.
- 9. Фазовые и структурные превращения в твердом состоянии, эвтектоидное превращение.
 - 10. Консолидация материала при спекании Движущие силы процесса спекания.
- 11. Механизмы формирования межзёренных контактов: вязкое течение, объёмная диффузия, граничная и поверхностная диффузия. Влияние размера частиц на процесс припекания.
- 12. Процессы скольжения и двойникования. Краевые, винтовые и смешанные дислокации, вектор Бюргерса, скольжение и переползание дислокаций.
- 13. Взаимодействие дислокаций между собой и с примесями, особенности деформации моно- и поликристаллов.
- 14. Влияние границ зерен на пластическую деформацию поликристаллов (дисклинации, сверхпластичность).
 - 15. Влияние пластической деформации на структуру и свойства материалов.
- 16. Влияние легирования, структуры концентраторов напряжений и масштабного фактора на характеристики механических свойств.
- 17. Металлографические и фрактографические методы исследования, оптическая и электронная, в том числе дифракционная микроскопия (просвечивающий и сканирующий электронные микроскопы).
 - 18. Испытания на твердость вдавливанием и царапанием.
 - 19. Триботехнические испытания.
- 20. Механические свойства, определяемые при динамическом нагружении, влияние скорости деформирования на характеристики прочности и пластичности.
 - 21. Моделирование свойств материалов.
 - 22. Конструкционные углеродистые и легированные стали.
 - 23. Металлы и сплавы с особыми свойствами.
 - 24. Магнитные материалы. Классификация материалов по магнитным свойствам.
- 25. Материалы с особыми тепловыми и упругими свойствами. Сплавы с заданными коэффициентом теплового расширения и модулем упругости.
- 26. Проводниковые и полупроводниковые материалы. Электропроводность твердых тел.
 - 27. Полупроводниковые материалы, строение и свойства.
- 28. Кристаллофизические методы получения сверхчистых материалов, легирование полупроводников.
- 29. Материалы высокой проводимости: проводниковые, припои, сверхпроводники. Сплавы повышенного электросопротивления. Контактные материалы.

- 30. Основные характеристики наноматериалов, подходы к их улучшению. Современные и перспективные области применения наноматериалов.
- 31. Особенности механических свойств полимеров, обусловленные их строением. Релаксационные свойства. Вязкое течение растворов и расплавов полимеров.
- 32. Типы разрушения полимеров. Влияние внешних факторов на процесс разрушения.
- 33. Физико-механические, адгезионные, фрикционные, антикоррозионные, диэлектрические свойства полимеров, методы исследования этих свойств.
- 34. Пластмассы на основе термопластичных и термореактивных полимеров. Методы переработки пластмасс в изделия.
- 35. Основные виды композитов на основе неорганических и органических (полимерных) материалов.
- 36. Обязательная и добровольная сертификация, правила и порядок проведения сертификации. Органы по сертификации и испытательные лаборатории.
 - 37. Основные положения национальной системы стандартизации.
 - 38. Порядок разработки, согласования и утверждения стандартов и ТУ.
 - 39. Унификация и контроль качества материалов и процессов.
 - 40. Экономический эффект от рационального выбора и применения материалов.
- 41. Программа мероприятий по реализации проекта производства нового вида материалов
- 42. Эффективность применения материалов с учетом экономичности, долговечности, безопасности и экологической чистоты.

К экзамену допускаются аспиранты, выполнившие все формы текущего контроля. При сдаче экзамена, аспирант получает три вопроса из перечня, приведенного выше.

4 Методические материалы для определения процедур оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок организации и проведения зачетов и экзаменов.