Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 02.11.2023 13:15:16 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
« 24 » мая 2021 г.

Рабочая программа дисциплины ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Направление подготовки

27.03.03 Системный анализ и управление

Направленность программы бакалавриата «Системный анализ в информационных технологиях»

Квалификация

Бакалавр

Форма обучения

Заочная

Факультет **информационных технологий и управления** Кафедра **системного анализа и информационных технологий**

> Санкт-Петербург 2021

ЛИСТ СОГЛАСОВАНИЯ

Должность разработчика	Подпись	Ученое звание, фамилия, инициалы
Декан факультета ИТ и управления,		профессор Мусаев А.А.
заведующий кафедрой системного		
анализа и ИТ		

Рабочая программа дисциплины «Теория вероятностей и математическая статистика» обсуждена на заседании кафедры системного анализа и информационных технологий протокол от « $28 \gg 04 + 2021 \, № 7$ Заведующий кафедрой А.А. Мусаев

Одобрено учебно-методической комиссией факультета ИТ и управления протокол от «19» 05 2021 № 8

Председатель В.В. Куркина

СОГЛАСОВАНО

Руководитель направления подготовки «Системный анализ и управление»	Д.А. Краснобородько
Директор библиотеки	Т.Н.Старостенко
Начальник методического отдела учебно-методического управления	Т.И.Богданова
Начальник учебно-методического управления	С.Н.Денисенко

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с план	нируе-
мыми результатами освоения образовательной программы	04
2. Место дисциплины (модуля) в структуре образовательной программы	05
3. Объем дисциплины	05
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	06
4.2. Занятия лекционного типа	06
4.3. Занятия семинарского типа	08
4.3.1. Семинары, практические занятия	07
4.4. Самостоятельная работа	07
5. Перечень учебно-методического обеспечения для самостоятельной работы обучаю	щихся
по дисциплине	07
6. Фонд оценочных средств для проведения промежуточной аттестации	08
7. Перечень основной и дополнительной учебной литературы, необходимой для	
освоения дисциплины	08
8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необ	бходи-
мых для освоения дисциплины	10
9. Методические указания для обучающихся по освоению дисциплины	10
10. Перечень информационных технологий, используемых при осуществлении образо	ова-
тельного процесса по дисциплине	
10.1. Информационные технологии	10
10.2. Программное обеспечение	10
10.3. Базы данных и информационные справочные системы	10
11. Материально-техническая база, необходимая для осуществления образовательног	о про-
цесса по дисциплине	11
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возмо	-онжо
стями здоровья	11

Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

В результате освоения образовательной программы бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ОПК-2	ОПК-2.4	Знать:
Способен формулировать задачи	Использование методов теории вероятно-	- базовые понятия теории вероятностей, ее предельные
профессиональной деятельности на	стей и математической статистики в реше-	теоремы (ЗН-1);
основе знаний профильных разделов	нии прикладных задач профессиональной	Уметь:
математических и естественнонауч-	деятельности	- решать базовые задачи теории вероятностей (У-1);
ных дисциплин (модулей)		Владеть:
		- навыками вероятностно-статистического анализа дан-
		ных (Н-1);
		Знать:
		- основные технологии статистического анализа данных
		(3H-2);
		Уметь:
		- осуществлять дескриптивный статистический анализ
		рядов наблюдений с использованием интегральной среды
		программирования Матлаб (У-2);
		Владеть:
		- практическими навыками статистической обработки
		случайных данных с использованием интегральной среды
		программирования Матлаб (Н-2).

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к дисциплинам обязательной части (Б1.О.23) и изучается на 4 курсе.

В методическом плане дисциплина опирается на элементы компетенций, сформированные при изучении дисциплин «Математика» и «Информатика». Полученные в процессе изучения дисциплины «Теория вероятностей и математическая статистика» знания, умения и навыки могут быть использованы при изучении дисциплин «Вычислительные машины, системы и сети», «Математическое программирование», «Интеллектуальный анализ данных», при прохождении производственной практики, а также при выполнении выпускной квалификационной работы

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	4/144
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	12
занятия лекционного типа	6
занятия семинарского типа, в т.ч.	6
семинары, практические занятия	6
лабораторные работы	-
курсовое проектирование (КР или КП)	-
КСР	-
другие виды контактной работы	-
Самостоятельная работа	123
Форма текущего контроля (Кр, реферат, РГР, эссе)	Kp(2)
Форма промежуточной аттестации (КР, КП, зачет, экзамен)	Экзамен (9)

4. Содержание дисциплины. 4.1. Разделы дисциплины и виды занятий.

	2 4		Занятия минарск типа академ.	,	абота,	тенции	каторы
№ п/п		Семинары и/или практические занятия	Лабораторные работы	Самостоятельная работа, академ. часы Формируемые компетенции	Формируемые индикаторы		
1.	Теория вероятностей: Основные положения и предельные теоремы	3	4	-	63	ОПК-2	ОПК-2.4
2.	Основы математической статистики и методы статистического анализа данных	3	2	-	60	ОПК-2	ОПК-2.4

4.2. Занятия лекционного типа.

№ раздела дисциплины	Наименование темы и краткое содержание занятия		Инновационная форма
1	Теория вероятностей: Основные положения и предельные теоремы. Теоремы сложения и умножения вероятностей. Формула полной вероятности и формула Байеса. Понятие гипотез. Случайные величины. Случайные векторы.	3	Мультимедийная визуализация (МВ)
2	Основы математической статистики и методы статистического анализа данных. Частоты и гистограммы. Оценки числовых характеристик. Метод наименьших квадратов: общие сведения, основные соотношения, критерии оптимальности.	3	Мультимедийная визуализация (МВ)

4.3. Занятия семинарского типа.

4.3.1. Семинары, практические занятия.

№ раздела дисципли-	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
ны 1	Введение в теорию вероятностей, основные понятия теории вероятностей. Решение задач по расчету вероятностей. Теоремы сложения и умножения вероятностей. Решение задач по алгебре вероятностей. Формула полной вероятности и формула Байеса. Понятие гипотез. Решение задач по расчету условных вероятностей. Повторение опытов. Решение задач о повторении опыта с использованием	2	Мультимедий- ная визуализа- ция (МВ)
1	формулы Бернулли. Случайные величины. Решение задач по построению законов распределения и оценке числовые характеристики случайных величин. Случайные векторы. Решение задач по анализу распределений случайных векторов Числовые характеристики функций случайных величин. Решение задач по вычислению математических ожиданий и дисперсий.	2	MB
2	Основные понятия математической статистики. Решение задач по гистограмм. Оценки числовых характеристик. Решение задач по проверке статистических гипотез. Оценка статистических ошибок 1-го и 2-го рода. МНК и линейная модель. Метод наименьших квадратов: общие сведения, основные соотношения, критерии оптимальности.	2	MB

4.4. Самостоятельная работа обучающихся.

№ раздела дис- циплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма кон- троля
	Теория вероятностей: случайные процессы, основные типы, классификация, понятия стационарности и эргодичности	63	Контрольная работа №1
2	Основы математической статистики: современные технологии статистического анализа данных	60	Контрольная ра- бота №2

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: https://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме экзамена.

Экзамен предусматривают выборочную проверку освоения предусмотренных элементов компетенций и комплектуются вопросами (заданиями) двух видов: теоретические вопросы (для проверки знаний) и задача (для проверки умений и навыков).

При сдаче экзамена, студент получает два вопроса из перечня вопросов и задачу, время подготовки студента к устному ответу - до 45 мин.

Пример варианта вопросов на экзамене:

Экзаменационный билет №1

- 1. Предмет и основные понятия теории вероятностей (случайный эксперимент, пространство элементарных исходов, случайное событие). Примеры.
- 2. Гипотеза о равенстве математических ожиданий двух нормально распределённых случайных величин при известных дисперсиях.
- 3. Задача.

Фонд оценочных средств по дисциплине представлен в Приложении № 1

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе — оценка «удовлетворительно».

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Хрущева, И. В. Основы математической статистики и теории случайных процессов: Учебное пособие / И. В. Хрущева, В. И. Щербаков, Д. С. Леванова. Санкт-Петербург; Москва; Краснодар: Лань, 2009. 331 с. ISBN 978-5-8114-0914-3.
- 2. Задачи по теории вероятностей: учебное пособие / Л.В. Аджемян, В.П. Гончарук, А.Г. Курицын и др.; под ред. А.Г. Курицына и В.О. Полякова; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра прикладной математики. Санкт-Петербург: СПбГТИ (ТУ), 2008. 89 с.
- 3. Вентцель, Е.С. Теория вероятностей и ее инженерные приложения: учебное пособие для втузов / Е. С. Вентцель, Л. А. Овчаров. 4-е изд., стер. Москва : Высш. шк., 2007. 491 с. ISBN 978-5-06-005714-0.
- 4. Лукина, М.В. Примеры решения задач по теории вероятностей. Случайные события: учебное пособие / М. В. Лукина, Е. В. Милованович; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра прикладной математики. Санкт-Петербург: СПбГТИ (ТУ), 2007. 54 с.
- 5. Ржонсницкий, А. В. Теория вероятностей и математическая статистика: Учебное пособие для заочной формы обучения / А. В. Ржонсницкий; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра высшей математики. Санкт-Петербург: СПбГТИ (ТУ), 2009. 58 с.
- 6. Курицын, А. Г. Курсовая работа по теории вероятностей и математической статистике: Методические указания / А. Г. Курицын; Министерство образования и науки Российской

- Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра прикладной математики. Санкт-Петербург : СПбГТИ (ТУ), 2010. 14 с.
- 7. Математическая статистика: Учебник для втузов / В. Б. Горяинов, И. В. Павлов, Г. М. Цветкова, О. И. Тескин; под ред. В. С. Зарубина, А. П. Крищенко. 3-е изд., испр. Москва: Изд-во МГТУ им. Н.Э.Баумана, 2008. 423 с. ISBN 978-5-7038-3191-5.
- 8. Теория вероятностей: учебник для втузов / А. В. Печинкин, О. И. Тескин, Г. М. Цветкова и др.; под ред. В. С. Зарубина, А. П. Крищенко. 4-е изд., стер. Москва: Изд-во МГТУ им. Н.Э.Баумана, 2006. 455 с. ISBN 5-7038-2485-0.
- 9. Волков, И. К. Случайные процессы: Учебник для втузов / И. К. Волков, С. М. Зуев, Г. М. Цветкова; под ред. В. С. Зарубина, А. П. Крищенко. 3-е изд., испр. М.: Изд-во МГТУ им. Н.Э.Баумана, 2006. 447 с. ISBN 5-7038-2887-2.
- 10. Курицын, А. Г. Выполнение контрольных заданий по теории случайных процессов: учебное пособие / А. Г. Курицын; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра системного анализа и информационных технологий. Санкт-Петербург: СПбГТИ (ТУ), 2018. 15

б) электронные учебные издания:

- 1. Курицын, А. Г. Выполнение контрольных заданий по теории случайных процессов: учебное пособие / А. Г. Курицын; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра системного анализа и информационных технологий. Санкт-Петербург: СПбГТИ (ТУ), 2018. 15 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech/ru (дата обращения: 05.04.2021). Режим доступа: для зарегистрированных пользователей.
- 2. Буховец, А. Г. Алгоритмы вычислительной статистики в системе R: учебное пособие для вузов по направлению "Прикладная информатика" / А. Г. Буховец, П. В. Москалев. 2-е изд., перераб. и доп. Электрон. текстовые дан. Санкт-Петербург; Москва; Краснодар: Лань, 2021. 160 с. ISBN 978-5-8114-1802-2. // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/168872 (дата обращения: 05.04.2021). Режим доступа: по подписке.
- 3. Алибеков, И. Ю. Теория вероятностей и математическая статистика в среде MATLAB: учебное пособие / И. Ю. Алибеков. Электрон. текстовые дан. Санкт-Петербург; Москва; Краснодар: Лань, 2021. 184 с. ISBN 978-5-8114-6865-2. // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/152661 (дата обращения: 05.04.2021). Режим доступа: по подписке.
- 4. Рыжиков, Ю. И. Численные методы теории очередей: учебное пособие / Ю. И. Рыжиков. Электрон. текстовые дан. Санкт-Петербург; Москва; Краснодар: Лань, 2019. 512 с. ISBN 978-5-8114-3462-6. // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/112695 (дата обращения: 02.06.2021). Режим доступа: по подписке.
- 5. Ржонсницкий, А. В. Теория вероятностей и математическая статистика: Учебное пособие для заочной формы обучения / А. В. Ржонсницкий; Министерство образования и науки Российской Федерации, Санкт-Петербургский государственный технологический институт (технический университет), Кафедра высшей математики. Санкт-Петербург: СПбГТИ (ТУ), 2009. 58 с. // СПбГТИ. Электронная библиотека. URL: https://technolog.bibliotech/ru (дата обращения: 05.04.2021). Режим доступа: для зарегистрированных пользователей.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

учебный план, РПД и учебно-методические материалы: http://media.technolog.edu.ru электронно-библиотечные системы:

«Электронный читальный зал — БиблиоТех» https://technolog.bibliotech.ru/; «Лань» https://e.lanbook.com/books/.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Теория вероятностей и математическая статистика» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций и других средств мультимедиа; взаимодействие с обучающимися посредством ЭИОС;

предоставление студентам электронных конспектов лекций и методических материалов по решению задач.

10.2. Программное обеспечение.

Microsoft Office (MS Word, Excel);

Матлаб – лицензионная интегральная среда программирования:

Adope Acrobat Reader DC

10.3. Базы данных и информационные справочные системы.

Справочно-поисковая система «Консультант-Плюс»

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Учебные классы, оснащенные персональными компьютерами, объединенными в локальную вычислительную сеть, с выходом в Интернет, лекционные аудитории с мультимедийными проекторами.

Наименование оборудованных учебных кабинетов, объектов для проведения практических занятий с перечнем основного оборудования:

Аудитория 12 кафедры системного анализа - Персональные компьютеры (13 штук): системная плата Quanta 2AC5; двухъядерный процессор Intel Pentium CPU G630 @ 2.70 ГГц; оперативная память DDR3 2048 МБ; жесткий диск 466 ГБ Seagate ST3500413AS (SATA-III 6.0Gb/s); оптический диск hp DVD A DS8A5SH; видеокарта Intel(R) HD Graphics Family (785 МБ); монитор HP Omni / Pro (1600х900@60Hz); звуковая плата Realtek High Definition Audio; сетевой адаптер Realtek PCIe GBE Family Controller; Клавиатура HID Primax Electronics; HID-совместимая мышь Logitech; камера HP 0.3MP. Операционная система - Microsoft Windows 7 Профессиональная 32-bit SP1.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Теория вероятностей и математическая статистика»

1. Перечень компетенций и этапов их формирования.

Индекс ком- петенции	Содержание	Этап формирования
ОПК-2	Способен формулировать задачи профессиональной деятельности на основе знаний профильных разделов математических и естественнонаучных дисциплин (модулей)	промежуточный

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование	Показатели сформирован-	Критерий	УРОВНИ СФОРМИРОВАННОСТИ			
индикатора дости-	ности (дескрипторы)	оценивания	(описание выраженности дескрипторов)			
жения компетенции			«удовлетворительно»	«хорошо»	«онрипто»	
			(пороговый)	(средний)	(высокий)	
ОПК-2.4	Дает определения базовых	Ответы на во-	Определения знает	Определения знает,	Все определения	
Использование ме-	понятий теории вероятно-	просы №1-6,	нетвердо, с ошибками,	но их интерпрета-	уверенно знает, при-	
тодов теории веро-	стей, записывает формулы	32-33 к экзаме-	предельные теоремы	цию осуществляет	водит примеры их	
ятностей и матема-	предельных теорем теории	ну	знает, но затрудняется	неуверенно. Все	использованием,	
тической статистики	вероятностей (ЗН-1)		с их доказательством	необходимые тео-	теоремы теории ве-	
в решении приклад-			и интерпретацией.	ремы знает, умеет	роятностей знает и	
ных задач професси-				их доказывать, но	уверенно доказывает	
1 1				не знаком с допол-	знаком с дополни-	
ональной деятельно-				нительным матери-	тельным материа-	
СТИ	D. C.		D	алом.	лом.	
	Решает базовые задачи	Ответы на во-	Решает базовые зада-	Решает базовые за-	Уверенно и без оши-	
	теории вероятностей (У-	просы №7-14 к	чи теории вероятно-	дачи теории веро-	бок решает базовые	
	1);	экзамену	стей с ошибками и	ятностей, допуска-	задачи теории веро-	
			нуждается в дополни-	ет незначительные	ятностей.	
			тельных пояснениях.	ошибки.		
	Демонстрирует навыки	Ответы на во-	Решает задачи веро-	Успешно решает	Уверенно и каче-	
	дескриптивного статисти-	просы №15-31	ятностно-	задачи вероятност-	ственно решает за-	
	ческого анализа данных	к экзамену	статистического ана-	но-статистического	дачи вероятностно-	
	(H-1);		лиза данных, но при	анализа данных, но	статистического	
			этом может допускать	допускает незначи-	анализа данных с	
			ошибки и нуждается в	тельные ошибки и	правильной интер-	
			дополнительных разъ-	неполную интер-	претацией получен-	
			яснениях задачи.	претацией полу-	ных результатов.	
				ченных результа-		
				TOB.		

Перечисляет и правильно выбирает основные технологии статистического анализа данных (ЗН-2) Осуществлять дескриптивный статистический анализ рядов наблюдений с использованием интегральной среды программирования Матлаб (У-2);	Ответы на вопросы № 32-37 к экзамену Ответы на вопросы №38-43 к экзамену	Приводит неполный перечень основных технологий статистического анализа данных, допускает ошибки при их выборе для решения конкретных задач анализа данных. Знаком с сущностью вероятностных расчетов рисков, но затрудняется решать конкретные задачи без дополнительных разъяснений.	Перечисляет все основные технологии статистического анализа данных, но неуверенно выбирает их при решении конкретных задач. Умеет проводить вероятностные расчеты рисков для сложных систем, но допускает незначительные ошибки.	Перечисляет все основные технологии статистического анализа данных, правильно и уверенно выбирает их при решении конкретных задач. Уверенно и полностью самостоятельно осуществляет вероятностные расчеты рисков для сложных систем.
Обладает практическими навыками статистической обработки случайных данных, в том числе с использованием интегральной среды программирования Матлаб (H-2).	Ответы на вопросы №44-54 к экзамену	Демонстрирует умение формировать алгоритмы обработки данных с помощью дополнительных указаний, программировать их и получать требуемые результаты.	Демонстрирует умение формировать алгоритмы обработки данных, программировать их и получать требуемые результаты.	Демонстрирует умение самостоятельно формировать алгоритмы обработки данных, программировать их и получать требуемые результаты и правильно их интерпретировать.

Шкала оценивания соответствует СТО СПбГТИ (ТУ):

По дисциплине промежуточная аттестация проводится в форме экзамена, шкала оценивания – балльная («отлично», «хорошо», «удовлетворительно», «неудовлетворительно»).

3. Типовые контрольные задания для проведения промежуточной аттестации

Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ОПК-2

- 1. Предмет и основные понятия теории вероятностей (случайный эксперимент, пространство элементарных исходов, случайное событие). Примеры.
- 2. Операции над случайными событиями. Несовместные события. Достоверное, невозможное, противоположное события. Примеры.
 - 3. Классическое определение вероятности. Примеры.
 - 4. Статистическое определение вероятности. Примеры.
 - 5. Аксиомы теории вероятностей и простейшие следствия из них.
 - 6. Теоремы сложения и умножения вероятностей.
- 7. Условная вероятность. Независимость событий. Теоремы умножения вероятностей.
 - 8. Полная группа событий. Формула полной вероятности.
 - 9. Полная группа событий. Формула Байеса.
 - 10. Схема испытаний Бернулли. Формула Бернулли.
 - 11. Наивероятнейшее число успехов в серии испытаний Бернулли.
- 12. Случайные величины. Функция распределения и её свойства. Вероятность попадания случайной величины в интервал.
- 13. Дискретная случайная величина, её ряд распределения и функция распределения.
- 14. Непрерывная случайная величина. Плотность вероятности и функция распределения непрерывной случайной величины, их свойства.
 - 15. Математическое ожидание случайной величины и его свойства.
- 16. Дисперсия и среднеквадратичное отклонение случайной величины, и их свойства.
 - 17. Начальные и центральные моменты случайной величины.
 - 18. Биномиальный закон распределения, математическое ожидание и дисперсия.
 - 19. Закон распределения Пуассона, математическое ожидание и дисперсия.
- 20. Равномерный закон распределения, плотность вероятности, функция распределения, математическое ожидание и дисперсия.
- 21. Показательный закон распределения, плотность вероятности, функция распределения, математическое ожидание и дисперсия.
- 22. Нормальный закон распределения, плотность вероятности, математическое ожидание и дисперсия.
- 23. Нормальный закон распределения, его функция распределения. Функция Лапласа и её свойства. Вероятность попадания нормально распределённой случайной величины в интервал. Правило "трёх сигма".
- 24. Системы случайных величин. Функция распределения системы двух случайных величин и её свойства.
 - 25. Двумерная дискретная случайная величина и её матрица распределения.
- 26. Двумерная непрерывная случайная величина. Двумерная плотность вероятности и её свойства.
- 27. Условные законы распределения (условный ряд распределения, независимость дискретных случайных величин).
- 28. Условные законы распределения (условная плотность вероятности, независимость непрерывных случайных величин).

- 29. Числовые характеристики системы случайных величин. Математическое ожидание суммы, разности и произведения случайных величин. Дисперсия суммы и разности.
- 30. Числовые характеристики системы случайных величин. Корреляционный момент (ковариация) и коэффициент корреляции, их свойства. Независимость и некоррелированность.
 - 31. Условное математическое ожидание и функция регрессии.
 - 32. Закон больших чисел. Теоремы Чебышева и Бернулли.
 - 33. Центральная предельная теорема. Теорема Ляпунова (формулировка).
- 34. Математическая статистика и её основные задачи. Выборочный метод. Примеры.
 - 35. Вариационный ряд и выборочная функция распределения.
 - 36. Группированная выборка, гистограмма и кумулянта.
- 37. Оценка параметра. Общие требования к оценкам (несмещённость, эффективность и состоятельность).
- 38. Выборочные моменты. Метод моментов для оценивания параметров распределения.
 - 39. Несмещённые оценки математического ожидания и дисперсии.
 - 40. Метод максимального правдоподобия. Примеры.
 - 41. Точность оценки. Доверительные интервалы.
- 42. Доверительный интервал для математического ожидания нормально распределённой случайной величины с известной дисперсией
- 43. Доверительный интервал для математического ожидания нормально распределённой случайной величины с неизвестной дисперсией
- 44. Доверительный интервал для дисперсии нормально распределённой случайной величины.
- 45. Проверка статистических гипотез. Ошибки 1 и 2 рода. Уровень значимости. Выбор критической области.
- 46. Гипотеза о равенстве математических ожиданий двух нормально распределённых случайных величин при известных дисперсиях.
- 47. Гипотеза о равенстве математических ожиданий двух нормально распределённых случайных величин при неизвестных дисперсиях.
- 48. Гипотеза о равенстве дисперсий двух нормально распределённых случайных величин.
 - 49. Гипотеза о виде закона распределения (критерий Пирсона).
 - 50. Гипотеза о виде закона распределения (критерий Колмогорова).
 - 51. Задача регрессии. Метод наименьших квадратов.
- 52. Свойства оценок коэффициентов и функции регрессии, полученных по методу наименьших квадратов.
 - 53. Доверительные интервалы для коэффициентов и значений функции регрессии.
 - 54. Проверка гипотезы об адекватности модели в задаче регрессии

К экзамену допускаются студенты, выполнившие все формы текущего контроля. При сдаче зачета, студент получает 2 вопроса из перечня, приведенного выше, и задачу.

Время подготовки студента к устному ответу на вопросы - до 45 мин.

Пример задачи: Математическое ожидание и дисперсия случайной величины X равны, соответственно: 5 и 3. Найти: математическое ожидание, дисперсию, среднеквадратичное отклонение случайной величины 4-2X.

Темы контрольных работ

Примеры типовых вариантов контрольной работы.

Контрольная работа № 1

Задача № 1

Пусть: X – случайная величина, принимающая значения -5, -1, 1 и 4 с вероятностями 0.14, 0.30, 0.10 и P соответственно. Найти: P, математическое ожидание, дисперсию, среднеквадратичное отклонение X и построить ее функцию распределения.

Задача № 2

Дано: X - непрерывная случайная величина, функция распределения которой имеет вид $F(x) = k * x ^ 4 + c$, при a < x < b; F(x) = 0, при x < a и F(x) = 1, при x > b, где a = 2 b = 6 Вычислить среднеквадратичное отклонение X и значения k и c, а также вероятность попадания случайной величины в интервал (a/2, b/2). Построить график функции распределения.

Задача № 3

Математическое ожидание и дисперсия случайной величины X равны, соответственно: 5 и 3. Найти: математическое ожидание, дисперсию, среднеквадратичное отклонение случайной величины 4-2X.

Контрольная работа № 2

Задача № 1

Дана выборка значений случайной величины:

{4,91; 3,66; 4,00; 4,69; 3,69; 3,11; 4,05; 4,51; 3,54; 4,21; 3,47; 4,23; 3,99; 3,08; 4,83; 4,88; 3,94; 4,35; 3,86} и ее функция распределения

$$F(x) = \begin{vmatrix} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x \le t \\ 1, & x > b \end{vmatrix}$$

(равномерный закон распределения).

Задание:

- 1) Используя метод моментов, найти оценки параметров a и b.
- 2) Построить оценки функции распределения и плотности вероятности.
- 3) Построить выборочную функцию распределения и сравнить ее с оценкой, полученной при помощи метода моментов.

Примечание. В каждом из вариантов задания используется один из шести видов закона распределения (равномерный, нормальный, показательный, прямоугольного треугольника, Симпсона, Лапласа).

Задача № 2

Дана группированная выборка. Все интервалы имеют одинаковую длину h=0,4 и начинаются с точки x=6,4. В каждый интервал попали следующие количества наблюдений:

Задание:

1) По заданной группированной выборке найти оценки математического ожидания и дисперсии. Построить гистограмму и график оценочной функции плотности вероятности.

2) Рассчитать критерий Пирсона. По таблицам найти критическое значение критерия Пирсона для заданного уровня значимости. Проверить гипотезу о том, что выборка извлечена из генеральной совокупности, распределенной по нормальному закону.

Задача № 3 Дана таблица экспериментальных данных исследования зависимости *x* от *y*:

х	1	1,2	1,4	1,6	1,8	2	2,2	2,4	2,6	2,8	3
у	14,68	16,46	17,32	18,04	19,01	19,71	20,51	22,08	22,68	24,01	24,52

Задание:

- 1) Используя метод наименьших квадратов, найти оценки коэффициентов и функции линейной регрессии: y = ax + b.
- 2) Построить доверительные интервалы для коэффициентов и функции регрессии (при доверительной вероятности 0,95).

4. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТП СТО СПбГТИ(ТУ) 016-2015. КС УКВД Порядок проведения зачетов и экзаменов.