Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 15.09.2023 17:44:59 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
« 25 » июня 2019 г

Рабочая программа дисциплины НАНОСТРУКТУРИРОВАННЫЕ КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

Направление подготовки

28.04.03 Наноматериалы

Направленность программы магистратуры

Наноматериалы для Промышленности 4.0

Квалификация

Магистр

Форма обучения

Очная

Факультет механический

Кафедра теоретических основ материаловедения

Санкт-Петербург 2019

ЛИСТ СОГЛАСОВАНИЯ

Должность разработчика	Подпись Ученое зва фамилия, инг	
Доцент		доцент Богданов С.П.

Рабочая программа дисциплины «Наноструктурированные керамические материалы» обсуждена на заседании кафедры теоретических основ материаловедения протокол от «06» июня 2019 № 8
Заведующий кафедрой
М.М.Сычев

Одобрено учебно-методической комиссией механического факультета протокол от «21» июня 2019 № 11

Председатель А.Н.Луцко

СОГЛАСОВАНО

Руководитель направления подготовки	М.М. Сычев
«Наноматериалы»	
Директор библиотеки	Т.Н.Старостенко
Начальник методического отдела	Т.И.Богданова
учебно-методического управления	
Начальник	С.Н.Денисенко
учебно-методического управления	

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	04
2. Место дисциплины в структуре образовательной программы	06
3. Объем дисциплины	06
4. Содержание дисциплины	
4.1. Разделы дисциплины и виды занятий	07
4.2. Формирование индикаторов достижения компетенций разделами дисц	иплины
	07
4.3. Занятия лекционного типа	8
4.4. Занятия семинарского типа	09
4.4.1. Лабораторные занятия	09
4.5. Самостоятельная работа обучающихся	10
5. Перечень учебно-методического обеспечения для самостоятельной работы обуч	чающихся
по дисциплине	11
6. Фонд оценочных средств для проведения промежуточной аттестации	11
7. Перечень учебных изданий, необходимых для освоения дисциплины	11
8. Перечень электронных образовательных ресурсов, необходимых для освоения	
дисциплины	12
9. Методические указания для обучающихся по освоению дисциплины	13
10. Перечень информационных технологий, используемых при осуществлении	
образовательного процесса по дисциплине	
10.1. Информационные технологии	13
10.2. Программное обеспечение	13
10.3. Базы данных и информационные справочные системы	13
11. Материально-техническое обеспечение освоения дисциплины в ходе реализац	(ИИ
образовательной программы	14
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными	
возможностями здоровья	15

Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации.16

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Для освоения образовательной программы магистратуры обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ПК-6	ПК-6.1	Знать:
Способен обоснованно использовать знания основных типов металлических, неметаллических наноструктурированных и композиционных материалов различного назначения, в том числе наноматериалов для решения профессиональных задач.	Знание основных свойств, способов производства и областей применения наноструктурированных керамических материалов.	- о теоретических исследования по созданию новых наноструктурированных керамических материалов (ЗН-1); - современные методы производства основных видов наноструктурированных керамических материалов (ЗН-2); - технологические процессы при производстве основных наноструктурированных керамических материалов (ЗН-3). Уметь: - выявить взаимосвязь между структурой и свойствами керамических материалов, применять знание фундаментальных законов и теорий для целенаправленного изменения свойств объекта исследования (У-1). Владеть: - методами анализа свойств керамических наноматериалов (Н-1).
	ПК-6.6 Выбор материалов для решения конкретных профессиональных задач с учётом их свойств и экономических соображений.	Знать: - свойства и области применения керамических наноматериалов (ЗН-4); Уметь: - формулировать требования к свойствам керамических материалов для конкретного применения (У-2); - выбрать керамический материал для решения конкретной задачи (У-3).
ПК-7	ПК-7.1	Уметь:
Способен осуществлять анализ, оценку надежности, экономичности и экологических	Просчитывание рисков при выборе наноструктурированных керамических материалов для заданной технологии.	- анализировать производственные риски при выборе марки и производителя наноструктурированных керамических материалов (У-4).

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
последствий применения	ПК-7.6	Знать:
наноматериалов.	Оценка социальной значимости и	- актуальные проблемы в области разработки, синтеза и применения
	ответственности при разработке	наноструктурированных керамических материалов (ЗН-5);
	новых технологий	Уметь:
	наноструктурированных	- поставить цель и определить задачи исследования
	керамических материалов.	наноструктурированных керамических материалов (У-5).

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к части формируемой участниками образовательных отношений Блока 1 «Дисциплины» образовательной программы магистратуры (Б1.В.03.01) и изучается на 1 курсе во 2 семестре.

В методическом плане дисциплина опирается на дисциплины «Материаловедение и технологии современных и перспективных материалов», «Структура и свойства наноматериалов», «Организация научного проекта». Полученные в процессе изучения дисциплины «Наноструктурированные керамические материалы» знания, умения и навыки могут быть использованы при прохождении преддипломной практики, а также при выполнении выпускной квалификационной работы.

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	4/144
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	64
занятия лекционного типа	32
занятия семинарского типа, в т.ч.	32
семинары, практические занятия	-
лабораторные работы	32
курсовое проектирование (КР или КП)	-
КСР	-
другие виды контактной работы	-
Самостоятельная работа	80
Форма текущего контроля	-
Форма промежуточной аттестации	Зачёт

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

			Занятия семинарского типа, академ. часы		работа,	етенции
№ п/п	Наименование раздела дисциплины	Занятия лекционного типа, акад. часы	Семинары и/или практические занятия	Лабораторные работы	Самостоятельная работа, акад. часы	Формируемые компетенции
1	Нанотехнология, наноматериалы в	1			8	ПК-6
	керамической технологии					ПК-7
2	2 Роль новых материалов и новых				8	
	технологий в развитии техники					
3	Термодинамические, физико-химические и	2			8	ПК-6
	физические свойства твердых веществ в					
	наномасштабном диапазоне					
4	Методы синтеза твердых веществ в	2			8	
	наноразмерном масштабе	2				
5	Методы оценки нанопорошков			2	8	
6	Консолидация наночастиц			2	8	
7	Спекание нанокерамики				8	
8	Свободное спекание нанопорошков	6 2		4	8	
9	Методы исследования структуры			12	8	
	наноструктурированных керамик					
10	Свойства нанокерамик	4		12	8	

4.2 Формирование индикаторов достижения компетенций разделами дисциплины

	1				
	Код				
No	индикаторов	Наименование раздела дисциплины			
Π/Π	достижения	паименование раздела дисциплины			
	компетенции				
1.	ПК-6.1	Нанотехнология, наноматериалы в керамической технологии,			
	ПК-6.6	Роль новых материалов и новых технологий в развитии техники.			
		Термодинамические, физико-химические и физические свойства			
		твердых веществ в наномасштабном диапазоне.			
		Методы синтеза твердых веществ в наноразмерном масштабе.			
		Методы оценки нанопорошков.			
		Консолидация наночастиц.			
		Спекание нанокерамики.			
		Свободное спекание нанопорошков.			
		Методы исследования структуры наноструктурированных керамик.			
		Свойства нанокерамик.			
2.	ПК-7.1	Нанотехнология, наноматериалы в керамической технологии,			
	ПК-7.6	Роль новых материалов и новых технологий в развитии техники.			

4.3. Занятия лекционного типа.

No	***	0.5	**
раздела	Наименование темы	Объем, акад. часы	Инновационная
дисциплины	ны и краткое содержание занятия		форма
1	Нанотехнология, наноматериалы в	1	интерактивная
	керамической технологии.		лекция
	Наномодифицированная керамика –		·
	перспективный класс неорганических		
	материалов со специальными свойствами.		
	Нанокерамика как химико-технологический		
	процесс, исторический приоритет нанокерамики.		
2	Роль новых материалов и новых технологий в	1	разбор
	развитии техники.		конкретных
	Проблемы применения нанопорошков в		ситуаций
	технологии керамики – разработка,		
	оборудование, деградация свойств вещества в		
	наномасштабном состоянии во времени.		
3	Термодинамические, физико-химические и	2	интерактивная
	физические свойства твердых веществ в		лекция
	наномасштабном диапазоне.		
	Размерные эффекты, поверхностная энергия, ее		
	роль в изменении параметров фазовых		
	переходов, фононного спектра, электронного		
	строения, электрофизических свойств.		
4	Методы синтеза твердых веществ в	2	интерактивная
	наноразмерном масштабе.		лекция
	Механосинтез, измельчение, газофазный,		
	плазмохимический, самораспространяющийся		
	высокотемпературный синтез, золь-гель, метод		
	испарения-конденсации, электрический взрыв и др.	2	
5	Методы оценки нанопорошков.	2	интерактивная
	Электронная микроскопия. Рентгенографический		лекция
	метод, методы определения удельной		
	поверхности по газовой адсорбции,		
	седиментации. Технологические свойства		
	нанопорошков (насыпная масса,		
-	агломерированность, текучесть и др.)	6	
6	Консолидация наночастиц.	6	интерактивная
	«Холодное» прессование, электрофорез, литье		лекция
	пленок, фильтрация под давлением,		
	центрифугирование. Характеристики пористости		
7	формованных образцов из наночастиц.	6	**************************************
/	Спекание нанокерамики.	6	интерактивная
	Вторичная консолидация как основа получения объемных материалов. Импульсные методы		лекция
	спекания, обеспечивающие уплотнение образцов		
	· · · · · · · · · · · · · · · · · · ·		
	и сохранность частиц в наноразмерном		
	диапазоне: в камерах высокого давления, горячее прессование, горячее изостатическое		
	прессование, торячее изостатическое прессование, электроразрядное спекание,		
	прессование, электроразрядное спекание, спекание «ковкой», спекание в ударных волнах.		
	опекание «ковкои», опекание в ударных волнах.		

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
8	Свободное спекание нанопорошков. Особенности диффузионных процессов в ансамбле наночастиц, механизмы массопереноса, рекристаллизация при спекании. Проблема деградации «наноразмерности» в системах с высокой избыточной поверхностной энергией. Метод управляющей траектории спекания, спекание с контролируемой скоростью уплотнения. Лазерное спекание композиционных многокомпонентных керамик — альтернатива импульсным методам консолидации.	6	интерактивная лекция
9	Методы исследования структуры наноструктурированных керамик. Электронная микроскопия, сканирующая зондовая микроскопия (атомно-силовая), метод аннигиляции позитронов. Анализ строения межзеренных, межфазных границ раздела в нано-структурированных керамиках.	2	интерактивная лекция
10	Свойства нанокерамик. Определение размера зерен, строения границ раздела. Методы оценки свойств нанокерамики – динамические, статические, вязкость разрушения, трещиностойкость, твердость однородных и гетерофазных керамик. Упрочнение нанокерамик волокнами, металлическими компонентами при создании нанокерметов. Сверхпластичность, ползучесть, механизмы разрушения. Области применения наноструктурированных керамических материалов – машиностроение, авиакосмическая техника, атомная энергетика, электротехника, медицина, покрытия.	4	интерактивная лекция

4.4. Занятия семинарского типа. 4.4.1. Лабораторные работы.

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
	Методы оценки нанопорошков. Определения удельной поверхности по газовой адсорбции, седиментации.	2	
6	Консолидация наночастиц. Подготовка порошков, прессование образцов, спекание.	2	
8	Свободное спекание нанопорошков. Спекание керамики и изучение результатов спекания.	4	

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
9	Методы исследования структуры наноструктурированных керамик. Подготовка шлифов. Изучение структуры представленных образцов керамики и образцов, полученных в результате лабораторной работы.	12	Мастер-класс
10	Свойства нанокерамик. Изучение пористости, фазового состава и механических свойств представленных образцов керамики и полученных в результате лабораторной работы.	12	

4.5. Самостоятельная работа обучающихся.

№ раздела дисциплины	Перечень вопросов для самостоятельного изучения	Объем, акад. часы	Форма контроля
1	Основные этапы истории изучения наноразмерного состояния твердых веществ, применяемых при создании керамики. Роль российских ученых, работы академика Тананаева.	8	контрольный опрос
2	Роль новых материалов и новых технологий в развитии техники.	8	контрольный опрос
3	Разработка методов получения порошков твердых веществ в наноразмерном состоянии в зависимости от химической связи.	8	контрольный опрос
4	Изучение особенностей технологии производства машиностроительной наноструктурированной керамики (на примере получения твердых сплавов, покрытий).	8	контрольный опрос
5	Ознакомление с основными типами структур наноматериалов и методами их изготовления (по Тейтеру).	8	контрольный опрос
6	Ознакомление с методами получения нанопористых керамических материалов.	8	контрольный опрос
7	Ознакомление со структурой и свойствами углеродных нанофаз – фуллерены, нанотрубки, композиции с их участием.	8	контрольный опрос
8	Методы получения наноматериалов из аморфного состояния.	8	контрольный опрос
9	Дисперсионноупрочненные материалы, стеклокерамики.	8	контрольный опрос
10	Влияние размера частиц на диэлектрические и магнитные свойства.	8	контрольный опрос

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме зачёта.

Зачёт предусматривает выборочную проверку освоения предусмотренных элементов компетенций и комплектуется заданиями двух видов: теоретический вопрос (для проверки знаний) и практическая задача (для проверки умений и навыков), время подготовки студента к устному ответу - до 30 мин.

Пример варианта заданий на зачёте:

Вариант № 1

- 1. Оксид/оксидные композиты: управление микроструктурой и свойствами.
- 2. Выполнить описание структуры материала по данным СЭМ.

Фонд оценочных средств по дисциплине представлен в Приложении № 1

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – оценка «зачёт».

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Брыков, А.С. Химия силикатных и кремнеземсодержащих вяжущих материалов: учебное пособие / А.С. Брыков. СПбГТИ(ТУ), 2011. 144 с.
- 2. Кобаяси, Н. Введение в нанотехнологию / Н. Кобаяси; пер. с яп. А. В. Хачояна; под ред. Л. Н. Патрикеева. М.: БИНОМ. Лаборатория знаний, 2007. 134 с.
- 3. Основы технологии тугоплавких неметаллических и силикатных материалов: учеб. пособие для вузов/А.П. Зубехин [и др.]. М.: Картэк, 2010. 307 с.
- 4. Основы нанотехнологии: учебник / Н.Т. Кузнецов, В.Н Новоторцев, В.А. Жабрев, В.И. Марголин. М.: БИНОМ. Лаборатория знаний, 2014. 397 с.
- 5. Основы материаловедения, коррозии и технологии материалов: учебное пособие / М.М. Сычев, В.Н. Коробко, Т.В. Лукашова, С.В. Мякин. СПб. : СПбГТИ(ТУ), 2011. 94 с.
- 6. Пантелеев, И. Б. Теоретические основы технологии керамики: учебное пособие / И. Б. Пантелеев, Л. В. Козловский СПб.: СПбГТИ(ТУ), 2012. 114 с.
- 7. Пантелеев, И. Б. Химическая технология тонкой и строительной керамики: учебное пособие / И. Б. Пантелеев. СПб.: СПбГТИ(ТУ), 2012. 104 с.
- 8. Суворов, С.А. Процессы разрушения, оптимизация свойств и выбор высокотемпературных наноструктурированных материалов. Учебное пособие / С.А. Суворов, В.В. Козлов, Н.В. Арбузова. СПб. : СПбГТИ(ТУ), 2013. 133 с.

9. Циркониевые материалы. Фазовые преобразования и свойства. [Текст]: учебное пособие / В.И. Страхов, А.И. Арсирий, О.В. Карпинская. – СПб.: СПбГТИ(ТУ). – 2011 – 92 с.

б) электронные издания:

- 1. Козлов, В.В. Методы синтеза нанопорошков и наноструктур. Методические указания / В.В. Козлов. СПб. : СПбГТИ(ТУ), 2014. 20 с.
- 2. Ковшов, А.Н. Основы нанотехнологии в технике: Учебное пособие для вузов по направлениям подготовки дипломированных специалистов "Конструкторскотехнологическое обеспечение машиностроительных производств" и "Автоматизированные технологии и производства" / А. Н. Ковшов, Ю. Ф. Назаров, И. М. Ибрагимов. 2-е изд., стер. Электрон. текстовые дан. М.: Академия, 2011. 240 с.
- 3. Орданьян, С.С. Проектирование состава, структуры и свойств керамических конструкционных наноматериалов: учебное пособие / С.С. Орданьян, А.Е. Кравчик. СПб.: СПбГТИ(ТУ), 2014. 86 с.
- 4. Орданьян, С.С. Теоретические основы управляемого спекания наноструктурных материалов: учебное пособие / С.С. Орданьян, И.Б. Пантелеев. СПб. : СПбГТИ(ТУ), 2014. 33 с.
- 5. Орданьян, С.С. Технология наноструктурированных керамических материалов. Новые керамические инструментальные материалы: учебное пособие / С.С. Орданьян, И.Б. Пантелеев. СПб.: СПбГТИ(ТУ), 2014. 86 с.
- 6. Пантелеев, И. Б. Теоретические основы технологии керамики : учебное пособие/И. Б. Пантелеев, Л. В. Козловский СПб.: СПбГТИ(ТУ), 2012.– 114 с.
- 7. Пантелеев, И. Б. Химическая технология тонкой и строительной керамики: учебное пособие / И. Б. Пантелеев. СПб.: СПбГТИ(ТУ), 2012. 104 с.
- 8. Стандартные методы исследования огнеупоров. [Текст]: учебное пособие / С. А. Суворов, Т. М. Сараева, И. А. Туркин и др. СПбГТИ(ТУ). СПб.: 2008 76 с.
- 9. Суворов, С.А. Процессы разрушения, оптимизация свойств и выбор высокотемпературных наноструктурированных материалов. Учебное пособие / С.А. Суворов, В.В. Козлов, Н.В. Арбузова. СПб. : СПбГТИ(ТУ), 2013. 133 с.

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

Интернет-ресурсы: проводить поиск в различных системах, таких как www.yandex.ru, www.google.ru, www.rambler.ru, www.yahoo.ru и использовать материалы сайтов, рекомендованных преподавателем на лекционных занятиях.

С компьютеров института открыт доступ к:

<u>www.elibrary.ru</u> - eLIBRARY - научная электронная библиотека периодических изданий;

<u>http://e.lanbook.com</u> - Электронно-библиотечная система издательства «Лань», коллекции «Химия» (книги издательств «Лань», «Бином», «НОТ»), «Нанотехнологии» (книги издательства «Бином. Лаборатория знаний»);

<u>www.consultant.ru</u> - КонсультантПлюс - база законодательных документов по РФ и Санкт-Петербургу;

<u>www.scopus.com</u> - База данных рефератов и цитирования Scopus издательства Elsevier;

<u>http://webofknowledge.com</u> - Универсальная реферативная база данных научных публикаций Web of Science компании Thomson Reuters;

http://iopscience.iop.org/journals?type=archive, http://iopscience.iop.org/page/subjects - Издательство IOP (Великобритания);

www.oxfordjournals.org - Архив научных журналов издательства Oxford University Press;

<u>http://www.sciencemag.org/</u> - Полнотекстовый доступ к журналу Science (The American Association for the Advancement of Science (AAAS));

http://www.nature.com - Доступ к журналу Nature (Nature Publishing Group);

<u>http://pubs.acs.org</u> - Доступ к коллекции журналов Core + издательства American Chemical Society;

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Наноструктурированные керамические материалы» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКДВ. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов является:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение.

Для проведения занятий имеются персональные компьютеры с программным обеспечением:

- Windows,
- OpenOffice.

10.3. Базы данных и информационные справочные системы.

- 1. http://prometeus.nse.ru база ГПНТБ СО РАН.
- 2. http://borovic.ru база патентов России.
- 3. http://1.fips.ru/wps/portal/Register Федеральный институт промышленной собственности
 - 4. http://google/com/patent- база патентов США.
 - 5. http://freepatentsonline.com- база патентов США.
 - 6. http://patentmatie.com/welcome база патентов США.
 - 7. http://patika.ru/Epasenet_patentnie_poisk.html европейская база патентов.
 - 8. http://gost-load.ru- база ГОСТов.
 - 9. http://worlddofaut.ru/index.php база ГОСТов.
 - 10. http://elibrary.ru Российская поисковая система научных публикаций.
 - 11. http://springer.com англоязычная поисковая система научных публикаций.

- 12. http://dissforall.com база диссертаций.
- 13. http://diss.rsl.ru база диссертаций.
- 14. http://webbook.nist.gov/chemistry NIST Standard Reference Database.
- 15. http://riodb.ibase.aist.go.jp/riohomee.html база спектров химических соединений.
- 16. http://markmet.ru марочник сталей.

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Для проведения занятий в интерактивной форме, чтения лекций в виде презентаций, демонстрации видео материалов используется мультимедийная техника.

Для проведения практических занятий используют компьютерный класс с персональными компьютерами.

Для проведения мастер классов и демонстрации практической исследовательской работы используется следующее оборудование:

- 1. Комплекс электрических измерений наноструктур (RLC метр E7-20, вольтметр универсальный электрометрический B7Э-42, комплекс измерительный K505, источник калиброванных напряжений, электрометр Keithley, генератор сигналов низкочастотный Г3-123, мегомметр ПС-1, источник питания постоянного тока Б5-44);
- 2. Комплекс спектральных измерений (Атомно-абсорбционный спектрометр МГА-915, сканирующий электронный микроскоп Tescan Vega 3 SBH, дифрактометр рентгеновский Rigaku Smartlab, спектрофотометры СФ-46, СФ-56, спектроколориметр ТКА-ВД, яркомер ФПЧ-УХЛ4, лазерный микроанализатор LMA -10, ИК-микроскоп со спектрофотометром Nicolet FT-IR, спектрофлуориметр AvaSpec-3648, исследовательский радиометр IL1700, микроскоп люминесцентный ЛЮМАМ);
- 3. Комплекс оптических измерений (15 металлографических микроскопов МИМ-4, МИМ-6, МИМ-8, универсальный измерительный микроскоп УИМ-21, рефрактометр ИРФ-23, 2 минералогических микроскопа МИН-8, 2 микротвердомера ПМТ-3,)
 - 4 Установка молекулярного наслаивания,
- 5. Установка измерения полярной и неполярной составляющих свободной поверхностной энергии;
 - 6. Анализатор размера частиц;
 - 7. Дилатометр кварцевый ДКВ-4,
 - 8. Ротационный вискозиметр «Rheotest»,
 - 9. Пресса CarlZeisse Jena усилием 10 и 30 т.;
 - 10. Две ультразвуковые ванна УЗУ- 0.25;
- 11. Весы электронные аналитические ALC-210d4, электронные технические ET-300;
 - 12. Весы механические ВНЦ, ВКЛ-500M, ВЛР-200, WA-21;
 - 13. Три бокса 7БП1-ОС;
 - 14. Вакуумные сушильные шкафы SPT-200,
- 15. Электропечи лабораторные SNOL 6,7/1300, РЭМ 24/87, МП-2УМ и др. с рабочей температурой до 1600^{0} C;
 - 16. Термометры, термопары;
 - 17. Бидистилляторы стеклянные БС, дистилляторы ДЭ-4,
 - 18. Магнитные мешалки ММ-5;
- 19.Стеклянная посуда: колбы, мерные цилиндры, водоструйный насос, холодильник, чашки Петри, колба Бунзена, воронка Бюхнера.

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Наноструктурированные керамические материалы»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание	Этап формирования
ПК-6	Способен обоснованно использовать знания основных типов металлических, неметаллических наноструктурированных и композиционных материалов различного назначения, в том числе наноматериалов для решения профессиональных задач.	промежуточный
ПК-7	Способен осуществлять анализ, оценку надежности, экономичности и экологических последствий применения наноматериалов.	промежуточный

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование индикатора	Показатели сформированности	Критерий оценивания	УРОВНИ СФОРМИРОВАННОСТИ (описание выраженности дескрипторов)		
достижения компетенции	(дескрипторы)	оценивания	«удовлетворительно» (пороговый)	«хорошо» (средний)	«отлично» (высокий)
ПК-6.1 Знание основных свойств, способов производства и областей применения наноструктурирова нных керамических материалов.	Знать: - о теоретических исследованиях по созданию новых наноструктурированных керамических материалов (ЗН-1).	Ответы на вопросы №1-34 к зачёту. Ответы на вопросы по материалам реферата.	Имеет представление о теоретических исследованиях по моделированию структуры и прогнозированию свойств керамических наноматериалов.	Знает свойства и области применения керамических наноматериалов, технологические процессы производства основных керамических наноматериалов, владеет методами анализа свойств керамических наноматериалов.	Знает основные направления работ в области керамических наноматериалов. Способен самостоятельно поставить задачу, провести исследование и подготовить сообщение по результатам работы.
	Знать: - современные методы производства основных видов наноструктурированных керамических материалов (3H-2).	Ответы на вопросы №1-34 к зачёту. Ответы на вопросы по материалам реферата.	Имеет представление о методах производства основных видов керамических наноматериалов.	Знает современные методы производства основных видов наноструктурированных керамических материалов.	Знает особенности различных методов производства основных видов наноструктурированных керамических материалов.
	Знать: - технологические процессы при производстве основных наноструктурированных керамических материалов (ЗН-3).	Ответы на вопросы №1-34 к зачёту. Ответы на вопросы по материалам реферата.	Имеет представление о технологических процессах при производстве основных керамических наноматериалов.	Знает основы технологии основных керамических наноматериалов.	Знает оборудование и технологические приемы при производстве основных наноструктурированных керамических материалов.
	Уметь: - выявить взаимосвязь между структурой и	Ответы на вопросы №1-34 и задания	Воспроизводит термины, основные понятия, знает методы и процедуры	Выявляет взаимосвязь между структурой и свойствами, применяет	Самостоятельно формулирует выводы, оценивает соответствие

	свойствами керамических материалов, применять знание фундаментальных закон и теорий для целенаправленного изменения свойств объекта исследования (У-1).	№1-4 к зачёту. Ответы на вопросы по материалам реферата. Отчёты по лабораторным работам.	эксперимента. Способен сопоставить и объяснить результаты эксперимента.	знание фундаментальных законов и теорий для объяснения результатов исследования. Вычленяет главные факторы, влияющие на уровень свойств, оценивает значимость полученных экспериментальных данных и ошибок эксперимента.	выводов полученным данным. Оценивает научную и прикладную значимость своей разработки.
	Владеть: - методами анализа свойств керамических наноматериалов (H-1).	Ответы на вопросы №1- 34 и задания №1-4 к зачёту. Отчёты по лабораторным работам.	Имеет представление о методах анализа керамических наноматериалов.	Владеет методами исследования керамических наноматериалов. Способен выбрать методику анализа выбранного объекта.	Способен поставить цель и определить задачи исследования; Владеет методами оценки точности и достоверность полученных результатов.
ПК-6.6 Выбор материалов для решения конкретных профессиональных задач с учётом их свойств и	Знать: - свойства и области применения керамических наноматериалов (ЗН-4).	Ответы на вопросы № 1-34 к зачёту. Ответы на вопросы по материалам реферата.	Имеет представление об областях применения керамических наноматериалов.	Знает набор свойств и области применения керамических наноматериалов.	Способен предложить набор свойств, необходимых для применения керамических наноматериалов в конкретной области.
экономических соображений.	Уметь: - формулировать требования к свойствам керамических материалов для конкретного применения (У-2).	Ответы на вопросы № 1-34 и задания №5 6 к зачёту. Ответы на вопросы по материалам реферата.	Имеет представление о свойствах керамических наноматериалов, необходимых для конкретного их применения.	Способен предъявить требования к керамическим наноматериалам для конкретного применения, способен перечислить необходимые для этого свойства.	Способен сформулировать набор требований и соответствующих свойств для нового вида керамических наноматериалов.

	Уметь: - выбрать керамический материал для решения конкретной задачи (У-3).	Ответы на вопросы № 1-34 и задания №5 6 к зачёту. Ответы на вопросы по материалам реферата.	Имеет представление о технических задачах, решаемых с помощью керамических наноматериалов.	Может выбрать подходящий керамический материал из ряда предложенных материалов для решения поставленных технических задача.	Способен предложить керамических наноматериал для конкретной области применения.
ПК-7.1 Просчитывание рисков при выборе наноструктурирован ных керамических материалов для заданной технологии.	Уметь: - анализировать производственные риски при выборе марки и производителя наноструктурированных керамических материалов (У-4).	Ответы на вопросы № 35-52 и задание №8 к зачёту. Ответы на вопросы по материалам реферата.	Воспроизводит термины, основные понятия, знает о производственных рисках.	Имеет представление о потенциальных рисках при производстве керамических наноматериалов.	Анализирует производственные риски при выборе метода производства керамического материала.
ПК-7.6 Оценка социальной значимости и ответственности при разработке новых технологий наноструктурирован ных керамических	Знать: - актуальные проблемы в области разработки, синтеза и применения наноструктурированных керамических материалов (ЗН-5).	Ответы на вопросы № 35-52 и зачёту. Ответы на вопросы по материалам реферата.	Имеет представление об актуальных проблемах в области разработки, синтеза и применения наноструктурированных керамических материалов.	Знает основные технологические сложности при производстве наноструктурированных керамических материалов.	Знает актуальные не решённые проблемы в области разработки, синтеза и применения наноструктурированных керамических материалов.
материалов.	Уметь: - поставить цель и определить задачи исследования наноструктурированных керамических материалов (У-5).	Ответы на вопросы № 35-52 и задание №7 к зачёту.	Имеет представление о целях и задачах исследования керамических материалов.	Может определить основные цели и задачи исследований керамических наноматериалов.	Способен выбрать метод исследования керамического наноматериала для оценки его значимости.

Шкала оценивания соответствует СТО СПбГТИ(ТУ):

По дисциплине промежуточная аттестация проводится в форме зачёта. Для получения зачёта должен быть достигнут «пороговый» уровень сформированности компетенций.

а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-6:

Теоретический вопрос:

- 1. Методы оценки размера твердых веществ (в диапазоне $10 \div 10^5$ нм), применяемых при создании керамики.
 - 2. Особенности структурного состояния наночастиц (d ≤ 100 нм).
 - 3. Природа дефектов в наночастицах, связь с методом получения.
- 4. Влияние поверхности и поверхностного состояния атомов в наночастицах на поведение ансамбля частиц.
- 5. Специфика технологических свойств ансамбля наночастиц при разработке керамики.
 - 6. Размерные эффекты, проявляемые в изменении физических свойств.
- 7. Причины появления метастабильных модификаций твердых веществ в нанодиапазоне.
- 8. Получение наночастиц методом механосинтеза, измельчения, применяемые механоактиваторы.
 - 9. Получение наночастиц методом плазмохимического синтеза твердых веществ.
- 10. Получение наночастиц соединений методом самораспространяющегося высокотемпературного синтеза.
 - 11. Получение наночастиц твердых веществ методом испарения-конденсации.
 - 12. Получение наночастиц методом золь-гель технологии, примеры.
 - 13. Получение наночастиц твердых веществ методом электрического взрыва.
- 14. Первичная консолидация нанопорошков, закономерности и особенности метода одноосного прессования.
 - 15. Центрифугирование, электрофорез, литье пленок.
- 16. Поровая структура первично консолидированных порошков как функция размера частиц.
 - 17. Механизмы аннигиляции пор в спекаемой керамической прессовке.
- 18. Вторичная консолидация спекание, задачи применительно к полученю керамики с планируемыми свойствами.
 - 19. Спекание в камерах высокого давления, преимущества и недостатки.
- 20. Горячее прессование, горячее изостатическое прессование, преимущества и недостатки.
 - 21. Электрофорезное (ерѕ) спекание.
- 22. Свободное спекание нанопорошков, особенности диффузионных процессов в прессовках наночастиц.
 - 23. Рекристаллизационные процессы, их роль формировании структуры керамики.
- 24. Деградация «наноразмерности» в системах с высокой избыточной поверхностной энергией.
 - 25. Метод управляющей траектории спекания, суть метода, его недостатки.
 - 26. Спекание с контролируемой скоростью уплотнения, суть метода, его недостатки.
- 27. Идеология разработки многокомпонентных керамик, физико-химические принципы, обеспечивающие сохранность наноразмерности при свободном спекании.
- 28. Исследование структуры объемных керамик с наноразмерными зернами твердой фазы.
- 29. Особенности строения межзеренных, межфазных границ, «тройных стыков» в наноструктурированных керамиках.
 - 30. Влияние дисперсности фазовых составляющих наноструктурированных

керамик на физические свойства.

- 31. Влияние дисперсности фазовых составляющих наноструктурированных керамик на механические свойства.
 - 32. Упрочнение нанокерамик создание керамоматричных композиций, примеры.
 - 33. Влияние температуры на свойства нанокерамик ползучесть, сверхпластичность.
- 34. Примеры использования наноструктурированных керамик в различных областях техники.

Практическое задание:

- 1. Определите гранулометрический состав порошка.
- 2. Определить фазовый состав керамического материала по данным РФА.
- 3. Рассчитать размер областей когерентного рассеивания по данным РСА.
- 4. Выполнить описание структуры материала по данным СЭМ.
- 5. Выбрать марку и поставщика материала из предложенного списка.
- 6. Сравнить предложенные материалы для возможного их применения в конкретном производстве.
- б) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-7:

Теоретический вопрос:

- 35. Волокнистые керамоматричные композиционные материалы (ККМ), области применения.
 - 36. Создание ККМ со специальными свойствами.
 - 37. Технология получения поликристаллических неорганических волокон.
 - 38. Синтез реакционно-активных оксидных волокон.
 - 39. Многокомпонентные оксидные волокна, их структура и свойства.
- 40. Получение высокотемпературных керамических материалов на основе волокон тугоплавких оксидов.
 - 41. Получение карбидоуглеродных волокон и материалов на их основе.
 - 42. Особенности формирования волокон С-ТіС.
 - 43. Высокотемпературные композиты с керамической матрицей.
 - 44. Получение безоксидных керамических волокон систем Si-C-N и Si-B-C-N.
 - 45. ККМ, полученные методом жидкокремниевой пропитки (ЖКП).
 - 46. Композиты с SiC-матрицей для высокотемпературных сфер применения.
 - 47. Композиты с керамической матрицей, армированные углеродным волокном.
- 48. Получение волокон из нитрида алюминия и их применение в композитных материалах.
- 49. Реакционноспеченный нитрид кремния, армированный короткими волокнами SiC.
- 50. ККМ, армированные углеродным волокном: получение, свойства, защита от окисления.
 - 51. Оксид/оксидные композиты: управление микроструктурой и свойствами.
- 52. Пористые композиты с муллитовой матрицей, армированные оксидным волокном.

Практическое задание:

- 7. Сравнить между собой различные предложенные методики исследования одно из свойств материала.
 - 8. Сравнить производственные риски при выборе марки и производителя керамического материала из предложенного списка.
- 4. Методические материалы для определения процедур оценивания знаний, умений и навыков, характеризующих этапы формирования компетенций.

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок организации и проведения зачетов и экзаменов.