Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Пекаревский Борис Владимирович

Должность: Проректор по учебной и методической работе

Дата подписания: 15.09.2023 17:45:10 Уникальный программный ключ:

3b89716a1076b80b2c167df0f27c09d01782ba84

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

УТВЕРЖДАЮ
Проректор по учебной
и методической работе
Б.В.Пекаревский
« 25 » июня 2019 г

Рабочая программа дисциплины **ХИМИЧЕСКОЕ СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ**

Направление подготовки

28.04.03 Наноматериалы

Направленность программы магистратуры

Наноматериалы для Промышленности 4.0

Квалификация

Магистр

Форма обучения

Очная

Факультет механический

Кафедра теоретических основ материаловедения

Санкт-Петербург 2019

ЛИСТ СОГЛАСОВАНИЯ

Должность разработчика	Подпись	Ученое звание, фамилия, инициалы
Доцент		доцент Мякин С.В.

Рабочая программа дисциплины «Химическое сопротивление материалов» обсуждена на заседании кафедры теоретических основ материаловедения протокол от «06» июня 2019 № 8
Заведующий кафедрой М.М.Сычев

Одобрено учебно-методической комиссией механического факультета протокол от «21» июня 2019 № 11

Председатель А.Н.Луцко

СОГЛАСОВАНО

Руководитель направления подготовки «Наноматериалы»	М.М. Сычев
Директор библиотеки	Т.Н.Старостенко
Начальник методического отдела учебно-методического управления	Т.И.Богданова
Начальник учебно-методического управления	С.Н.Денисенко

СОДЕРЖАНИЕ

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с
планируемыми результатами освоения образовательной программы
2. Место дисциплины в структуре образовательной программы
3. Объем дисциплины
4. Содержание дисциплины
4.1. Разделы дисциплины и виды занятий
4.2. Формирование индикаторов достижения компетенций разделами дисциплины
07
4.3. Занятия лекционного типа
4.4. Занятия семинарского типа
4.4.1. Семинары, практические занятия
4.4.2. Лабораторные занятия
4.5. Самостоятельная работа обучающихся
5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся
по дисциплине
6. Фонд оценочных средств для проведения промежуточной аттестации12
7. Перечень учебных изданий, необходимых для освоения дисциплины
8. Перечень электронных образовательных ресурсов, необходимых для освоения
дисциплины
9. Методические указания для обучающихся по освоению дисциплины21
10. Перечень информационных технологий, используемых при осуществлении
образовательного процесса по дисциплине
10.1. Информационные технологии
10.2. Программное обеспечение
10.3. Базы данных и информационные справочные системы
11. Материально-техническое обеспечение освоения дисциплины в ходе реализации
образовательной программы
12. Особенности освоения дисциплины инвалидами и лицами с ограниченными
возможностями здоровья
Приложения: 1. Фонд оценочных средств для проведения промежуточной аттестации24

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы.

Для освоения образовательной программы магистратуры обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ПК-1	ПК-1.4	Знать:
Способен использовать на практике современные представления о влиянии микро- и нано-структуры на свойства материалов, их взаимодействии с окружающей средой, полями, энергетическими частицами и	Исследования наноматериалов опираясь, на фундаментальные знания о микро- и наноматериалах.	Классификацию и механизмы коррозионных разрушений различных классов материалов, а также основные факторы, влияющие на их коррозионную стойкость материалов (3H-1)
излучением.	ПК-1.5 Опора на современные теоретические знания в своей практической деятельности	 Знать: Методы предотвращения коррозионных разрушений при проектировании оборудования, сооружений и конструкций (ЗН-2). Уметь: Проводить оценку и выполнять расчеты показателей коррозионной стойкости материалов (У-1) Владеть: Навыками диагностики и оценки риска возникновения коррозионных разрушений, проведения испытаний материалов и элементов оборудования и конструкций на коррозионную стойкость (Н-1)

Код и наименование	Код и наименование индикатора	Планируемые результаты обучения
компетенции	достижения компетенции	(дескрипторы)
ПК-6	ПК-6.6	Уметь:
Способен обоснованно использовать знания основных типов металлических, неметаллических наноструктурированных и композиционных материалов различного назначения, в том числе наноматериалов для решения профессиональных задач.	Выбор материалов для решения конкретных профессиональных задач с учётом их свойств и экономических соображений.	Осуществлять оптимальный выбор материалов для изготовления оборудования, сооружений и конструкции по критериям максимальной коррозионной стойкости с учетом характера коррозионной среды и условий эксплуатации (У-2)

2. Место дисциплины в структуре образовательной программы.

Дисциплина относится к факультативной части (Φ ТД.01) и изучается на 2 курсе в 3 семестре.

В методическом плане дисциплина опирается на дисциплины «Материаловедение и технологии современных и перспективных материалов», «Структура и свойства наноматериалов», «Наноразмерное состояние вещества», «Особочистые вещества и материалы». Полученные в процессе изучения дисциплины «Химическое сопротивление материалов» знания, умения и навыки могут быть использованы при прохождении преддипломной практики, а также при выполнении выпускной квалификационной работы.

3. Объем дисциплины.

Вид учебной работы	Всего, ЗЕ/академ. часов
Общая трудоемкость дисциплины	3/108
(зачетных единиц/ академических часов)	
Контактная работа с преподавателем:	54
занятия лекционного типа	16
занятия семинарского типа, в т.ч.	34
семинары, практические занятия	4
лабораторные работы	30
курсовое проектирование (КР или КП)	-
КСР	4
другие виды контактной работы	-
Самостоятельная работа	54
Форма текущего контроля	Индивидуальное задание
Форма промежуточной аттестации	Зачет

4. Содержание дисциплины.

4.1. Разделы дисциплины и виды занятий.

			Занятия семинарского типа, академ. часы		Самостоятельная работа, академ. часы	этенции
№ п/п		Семинары и/или практические занятия	Лабораторные работы	Формируемые компетенции		
1	Введение. Виды и механизмы коррозионных разрушений	6		6	14	ПК-1
2	Методы диагностики коррозионных разрушений и испытаний на коррозионную стойкость.	3		16	10	ПК-1, ПК-6
3	Методы предотвращения коррозии и защиты от нее.	7	4	8	30	ПК-6

4.2 Формирование индикаторов достижения компетенций разделами дисциплины

№ п/п	Код индикаторов достижения компетенции	Наименование раздела дисциплины		
1	ПК 1.4	Введение. Виды и механизмы коррозионных разрушений		
2	ПК 1.5	Методы диагностики коррозионных разрушений и		
		испытаний на коррозионную стойкость.		
3	ПК 6.6	Методы диагностики коррозионных разрушений и		
		испытаний на коррозионную стойкость.		
		Методы предотвращения коррозии и защиты от нее		

4.3. Занятия лекционного типа.

$\mathcal{N}_{\underline{0}}$	Наименование темы	Объем,	Инновационная
раздела	и краткое содержание занятия	акад.	форма
дисциплины	п криткое содержите запити	часы	φοριπα
1	Введение. Классификация коррозионных	1	Интерактивная
	разрушений.		лекция
	Прямой и косвенный ущерб от коррозии.		
	Классификация коррозионных процессов по		
	характеру (локализации) разрушений, характеру		
	коррозионной среды, механизмам протекания.		**
1	Механизмы протекания процессов коррозии.	5	Интерактивная
	Виды и механизмы химической коррозии. Газовая		лекция
	коррозия – особенности протекания в различных		
	агрессивных газовых средах, специфическая		
	стойкость и нестойкость различных материалов,		
	особенности кинетики. Коррозия в жидкостях-		
	неэлектролитах.		
	D		
	Электрохимическая коррозия – общий механизм,		
	явления поляризации и деполяризации,		
	особенности кинетики.		
	Oseferyzery erzesterycz versycz werene		
	Особенности атмосферной, морской, подземной		
	(почвенной, микробиологической, под действием		
	блуждающих токов) коррозии.		
	Внешние и внутренние факторы, влияющие на		
	интенсивность коррозии.		
2	Методы диагностики коррозионных	2	Интерактивная
_	разрушений и испытаний на коррозионную	_	лекция
	стойкость		лекции
	Общие принципы, классификация и особенности		
	методов диагностики различных видов		
	коррозионных разрушений материалов.		
	Стандартные методы испытаний материалов на		
	коррозионную стойкость		
2	Показатели коррозионной стойкости	1	
	Стандартные прямые и косвенные показатели	1	
	коррозионной стойкости (интенсивности		
	протекания коррозии) и методики их расчета.		
	протекция коррозии) и методики их рас тега.		
3	Методы предотвращения коррозии на стадии	2	
	проектирования оборудования, конструкций и		
	сооружений		
	Правила оптимального выбора материалов и их		
	сочетаний по критерию максимальной		
	коррозионной стойкости		
	Учет конструктивно-геометрических факторов,		
	влияющих на риск возникновения и интенсивность		
	протекания коррозии		
]

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
3	Методы защиты от коррозии при эксплуатации	5	
	оборудования, сооружений и конструкций Методы повышения коррозионной стойкости за счет воздействия на материал. Защитные покрытия: классификация, свойства, методы нанесения. Коррозионно-стойкое легирование. Электрохимическая (протекторная, катодная, анодная защита)		

4.4. Занятия семинарского типа 4.4.1. Семинары, практические занятия

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Инновационная форма
3	Расчет параметров электрохимической защиты Студенты рассчитывают требуемые характеристики систем протекторной и катодной защиты для заданных конструкций и сооружений на основании исходных данных для проектирования		Анализ конкретных ситуаций

4.4.2. Лабораторные занятия

№ раздела дисциплины	Наименование темы и краткое содержание занятия	Объем, акад. часы	Примечание
1	Потенциалы металлов в растворах электролитов На лабораторном занятии студенты определяют электродные потенциалы ряда металлов в растворах электролитов с помощью рН-метра в зависимости от условий подготовки поверхности материала, состава и концентрации растворов		
1	Изучение кинетики электрохимической коррозии В лабораторной работе студенты учатся определять весовые потери металла и рассчитывают скорость коррозии по силе коррозионного тока в зависимости от природы материалов анодных и катодных участков, соотношения их площадей и условий контакта.		

) NC			
№	Наименование темы	Объем,	Пруплачачу
раздела дисциплины	и краткое содержание занятия	акад. часы	Примечание
2	Влияние внешних и внутренних факторов на	4	
	скорость коррозии		
	При выполнении лабораторной работы студенты		
	изучают коррозионное поведение материалов в среде различных кислот в зависимости от		
	химического состава структуры материала и		
	концентрации кислоты или щелочи,		
	температуры и особенностей контакта с		
	окружающей средой.		
2	Определение скорости коррозии металлов и	4	
_	сплавов объемным методом	-	
	Студенты изучают кинетику газовыделения при		
	протекании коррозии в кислых и щелочных		
	средах и на основании результатов измерений		
	объема выделяющегося водорода рассчитывают		
	объемный и весовой показатели коррозии.		
2	Определение качества лакокрасочного	4	
_	покрытия электрохимическим методом	-	
	Студенты проводят оценку сплошности и		
	пористости лакокрасочного покрытия		
	посредством определения очагов точечной		
	коррозии по изменению окраски специального		
	индикатора		
2	Определение показателей коррозионной	4	
	стойкости		
	Студенты выполняют индивидуальные задания		
	по расчету весовых, объемных и		
	электрохимических показателей коррозионной		
	стойкости на основании данных измерения		
	потери массы материала, выделения водорода,		
	поглощения кислорода или силы		
	коррозионного тока при стандартных испытаниях		
3	Защита от коррозии с помощью ингибиторов	4	
	Студенты изучают влияние химической		
	природы и концентрации ингибиторов на		
	снижение интенсивности коррозионного		
	разрушения различных материалов в заданных		
	агрессивных средах и определяют оптимальные		
	условия ингибирования на основании		
	полученных данных.		

№ раздела и краткое содержание занятия	Объем, акад. часы	Примечание
3 Защита от коррозии стеклоэмалевыми покрытиями. Студенты знакомятся с методами подготовки поверхности материалов к нанесению защитных стеклоэмалевых покрытий и их формирования, наносят стеклоэмалевые покрытия на поверхность образцов защищаемых материалов и определяют характеристики полученных покрытий (сплошность, толщину,		

4.5. Самостоятельная работа обучающихся

№ раздела дисциплины	Перечень вопросов для Объем, самостоятельного изучения акад. часы		Форма контроля	
1	Особые конструктивно-геометрические факторы, оказывающие влияние на коррозию (щелевая, ножевая коррозия) Коррозия под действием дополнительных механических воздействий (коррозионное растрескивание, коррозионная усталость. коррозия при трении, гидроэрозия, кавитационная коррозия и струйная эрозия.	14	Устный опрос	
2	Стандарты в области обеспечения коррозионной стойкости и защиты от коррозии	10	Устный опрос	
3	Методы защиты от коррозии посредством воздействия на коррозионную среду. Удаление агрессивных компонентов из окружающей среды. Ингибирование коррозии. Использование защитных атмосфер.		Устный опрос	
3	Выбор оптимальных коррозионно-стойких материалов для эксплуатации в заданных условиях	16	Индивидуальное задание	

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине.

Методические указания для обучающихся по организации самостоятельной работы по дисциплине, включая перечень тем самостоятельной работы, формы текущего контроля по дисциплине и требования к их выполнению размещены в электронной информационно-образовательной среде СПбГТИ(ТУ) на сайте: http://media.technolog.edu.ru

6. Фонд оценочных средств для проведения промежуточной аттестации

Промежуточная аттестация по дисциплине проводится в форме зачёта.

При сдаче зачета студент получает два вопроса из перечня вопросов, время подготовки студента к устному ответу - до 30 мин.

Пример вопросов к зачёту:

Вариант № 1

- 1. Механизм электрохимической коррозии.
- 2. Методы диагностики коррозионных разрушений

Фонд оценочных средств по дисциплине представлен в Приложении № 1.

Результаты освоения дисциплины считаются достигнутыми, если для всех элементов компетенций достигнут пороговый уровень освоения компетенции на данном этапе – оценка «зачёт».

Типовые контрольные задания для проведения текущей аттестации

Примеры индивидуальных заданий

Задание по теме «Расчет показателей коррозионной стойкости»

Коррозионная стойкость — способность металла сопротивляться коррозии. Показатели коррозионной стойкости позволяют сравнить различные металлы и сплавы по способности сопротивляться коррозии.

Весовой показатель $K_{\text{в}}$ характеризует потерю массы металла в результате коррозии с единицы поверхности в единицу времени:

$$\mathbf{K}_{\mathrm{B}} = \frac{\Delta \mathbf{m}}{\mathbf{S} \cdot \mathbf{\tau}}, \left[\mathbf{r} / (\mathbf{M}^2 * \mathbf{q}) \right] \tag{1}$$

где Δm — потеря массы металла, г; S — поверхность металла, подвергнутая коррозии, м²; τ — время коррозии, ч.

Глубинный показатель П характеризует глубину коррозионного разрушения металла в единицу времени:

$$\Pi = K_{\rm B} \frac{8,76}{\rho}, [\text{мм/год}]$$
 (2)

где ρ – плотность металла, г/см³.

Объемный показатель K_v характеризует объем выделившегося в результате коррозии водорода (или поглощенного кислорода) с единицы поверхности в единицу времени:

$$K_{\rm V} = \frac{\Delta V_{\rm H2}}{S \cdot \tau}, [c {\rm M}^3/(c {\rm M}^2 * {\rm y})]$$
 (3)

где ΔV H_2 (ΔV O_2) объем выделившегося водорода (поглощенного кислорода) в см³, приведенный к нормальным условиям по формуле:

$$\Delta V_{H2} = \frac{\Delta V_{H2} u_{3M} \cdot p \cdot 273}{760 \cdot (273 + t)}, [c_{M}^{3}]$$
 (4)

где p — давление, мм.рт.ст.(нормальное давление = 760 мм рт.ст. или 1013 гПа); t — температура, $^{\rm o}$ C; ΔV $H_{\rm 2U3M}$ (ΔV $O_{\rm 2U3M}$) — объем выделившегося водорода (поглощенного кислорода), измеренный в опыте при данных p и t.

Зная $\Delta V H_2 (\Delta V O_2)$, можно найти потерю массы:

$$\Delta m = \frac{A \cdot \Delta V_{H_2}}{n \cdot 11, 2 \cdot 1000}, [\Gamma] \quad (5a) \quad \Delta m = \frac{A \cdot \Delta V_{O_2}}{n \cdot 5, 6 \cdot 1000}, [\Gamma] \quad (56)$$

A – атомная масса металла, г/моль; n – валентность.

В случае электрохимической коррозии потерю массы можно также найти с помощью закона Фарадея по силе коррозионного тока:

$$\Delta m = \frac{A \cdot 60}{F \cdot n \cdot 1000} \cdot \int_0^{\tau} I(\tau) d\tau, [\Gamma]$$
 (6)

где I — сила коррозионного тока, мA; F = 96500 Кл/моль — число Фарадея; τ — время, мин. Интеграл $I(\tau)d\tau$ находится из площади графической зависимости тока коррозии от времени.

Задание 1

Определить весовые потери и объемный показатель скорости коррозии сплава, если процесс протекал с водородной деполяризацией и известны:

```
температура – 18^{\circ}C;
давление – 757 мм рт. ст.;
валентность – 3;
атомная масса – 27,0
количество выделившегося водорода за 1,5 часа составило 69 см<sup>3</sup> размеры изделия – диаметр 0,030 м, длина 0,065 м
```

Задание 2

Определить весовые потери сплава по силе коррозионного тока и глубинный показатель скорости коррозии, если известны:

```
температура — 21\,^{\circ}C; валентность — 2; атомная масса — 65,4; время испытания — 2,3\, часа; плотность — 7100\, кг/м^3; размеры контактируемой поверхности 0,035\, м \times 0,030\, м \times 0,005\, м; сила тока в момент погружения — 150\, мА; через 2\, минуты — 100\, мА; через 4\, минуты — 98\, мА; через 6\, минут — 96\, мА; через 8\, минут — 94\, мА; через 10\, минут — 90\, мА и далее она не менялась.
```

Задание 3

Определить время контакта сплава с коррозионной средой, если известны:

```
плотность — 7100 \text{ кг/м}^3; температура — 25 \, ^{\circ}\text{C}; давление — 754 \, \text{мм} рт. ст.; валентность — 2; атомная масса — 65,4; объем поглощенного кислорода — 8 \, \text{см}^3; глубинный показатель коррозии — 0,56 \, \text{мм/год}; размеры изделия — диаметр 0,056 \, \text{м}, длина 0,081 \, \text{м}.
```

Задания по теме «Расчет параметров электрохимической защиты»

Расчет параметров протекторной защиты

Склад жидкого топлива состоит из n стальных шаровидных резервуаров объёмом V м³. Они находятся в почве, удельное сопротивление которой в среднем в течении года составляет $\rho_{\rm n}$ (Ом • м) (рисунок 1). Чтобы установить силу тока, необходимую для получения защитного потенциала, была произведена пробная катодная поляризация поверхности объекта. Найдено, что для достижения потенциала -0.85В (относительно медно-сульфатного электрода сравнения) необходим ток $I_{\rm n.s.}$ Площадь поверхности одного резервуара S_1 , площадь переливных труб $-S_2$. Таким образом, полная площадь защищаемой поверхности составляет $S_3 = S_1 * n_p + S_2$. При этом защитная плотность тока должна составлять:

$$J_{\pi.3.}=I_{\pi.3.}/(n_p*~S_1+S_2)=I_{\pi.3.}/S_3~A~/~\text{м}^2. \eqno(1)$$
 где n_p – количество резервуаров

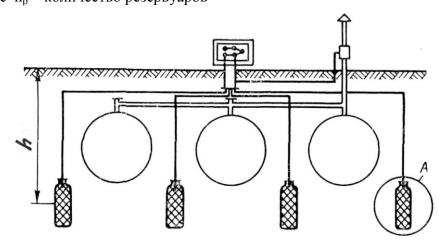


Рисунок 1 – Схема протекторной защиты подземных стальных резервуаров

Для защиты резервуаров применены цилиндрические протекторы, размеры которых приведены на рисунке 2, а электротехнические параметры — в таблице 1. Протекторы помещены в заполнители, параметры которых приведены в таблице 2.

Перед монтажом защиты необходимо определить следующие параметры:

1. Сопротивление растеканию тока одного протектора, установленного вертикально $R_{1A \text{ верт}}$ (Ом):

$$R_{1\text{A Bept.}} = \frac{\rho_{z}}{2\pi l_{3}} \times 2.3 \times \left\{ \lg \frac{2l_{3}}{d_{3}} + 0.5 \times \lg \frac{4h + l_{p}}{4h - l_{3}} + \frac{\rho_{3}}{\rho_{z}} \times \lg \frac{d_{3}}{d} \right\}, \text{ Om } (2)$$

где ρ_{Γ} – удельное сопротивление грунта, Ом·м;

 ρ_3 – сопротивление заполнителя, Ом·м;

d – диаметр протектора, м;

 d_3 – диаметр заполнителя (протектора вместе с заполнителем), м;

 l_3 – высота заполнителя, м;

h – глубина установки протектора, м.

При горизонтальном размещении отдельного протектора сопротивление растеканию тока определяется по формуле:

$$R_{1\text{A rop.}} = \frac{0.16 \times \rho_{z}}{l_{s}} \times \left\{ 2.3 \times \lg \frac{4l_{s}}{d_{s}} + 2.3 \times \lg \frac{l_{s}}{h} + \frac{2h}{l_{s}} - 2 \right\}; \text{ Om}$$
 (3)

где ρ_{Γ} - удельное сопротивление грунта, Ом·м;

 l_3 – длина протектора вместе с заполнителем, м;

h – глубина установки протектора, м;

 d_3 – диаметр протектора вместе с заполнителем, м.

2. Силу поляризующего тока, которую можно получить от одного протектора $I_{\pi,3,1}(A)$:

$$I_{\text{II}.3.1} = E_{\text{II}3}/(R_p + R_A); A$$
 (4)

где $I_{n,3,1}$ - величина поляризующего тока от одного протектора, A;

 $E_{\text{п.3}}$ – величина потенциала после введения защиты, B (таблица 1);

 R_p – сопротивление резервуаров, Ом;

 R_{1A} – сопротивление растеканию тока, Ом.

3. Число протекторов, необходимых для защиты данной конструкции n:

$$n = I_{\pi,3}/I_{\pi,3,1} \tag{5}$$

Склад топлива является сложной конструкцией, которая требует применения сгруппированных протекторов, так как они оказывают влияние друг на друга, что снижает их токоотдачу (особенно при близком взаимном расположении). С целью достижения максимально равномерно распределённого потенциала обычно устанавливают две группы протекторов, размещённых на уровне дна резервуаров. Число групп протекторов и их количество в каждой группе определяется методом последовательных приближений.

4. Сопротивление растеканию тока группы протекторов:

$$R_{A \text{ rp.}} = R_{A1}/(n * \beta); O_{M}$$
 (6)

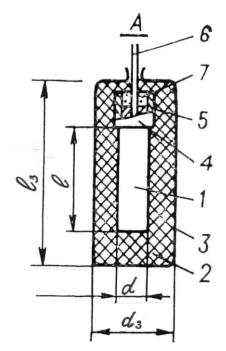
где β – коэффициент, учитывающий взаимодействие протекторов в группе, β = 0,8.

5. Силу поляризующего тока, которую можно получить от группы протекторов:

$$I_{\text{II.3 rp.}} = E_{\text{II3}}/(R_p + R_{Arp}), A$$
 (7)

где $E_{\pi,3}$ – потенциала после введения защиты, B (таблица 1);

 R_p – сопротивление резервуаров, Ом;


 $R_{A\,rp}^{-}$ – сопротивление растеканию тока группы протекторов; Ом.

6. После проведённых расчётов необходимо определить, даёт ли данная система двух групп протекторов достаточный поляризующий ток:

$$I_{\Pi,3} \le 2 I_{\Pi,3 \text{ rp.}}$$
 (8)

Если это условие не выполняется, необходимо увеличить количество протекторов в группе (метод последовательных приближений).

7. Масса протектора, имеющего цилиндрическую форму, определяют из его объёма и плотности металла — $Al - 2800 \text{ кг/m}^3$; $Zn - 7100 \text{ кг/m}^3$; $Mg - 1740 \text{ кг/m}^3$.

1 – протектор; 2 – заполнитель; 3 – мешок из полотна; 4 – изоляционная втулка; 5 – впаянный оцинкованный стальной пруток; 6 – электрический провод, припаянный к прутку 5; 7 – изоляция

Рисунок 2 – Конструкция протектора с заполнителем

8. Срок службы протектора — время, в течение которого протектор дает поляризующий ток:

$$\tau_{\Pi} = 31.7 \times 10^{-3} \quad \frac{m_n \times \eta}{I_{n.3.1}}$$
; лет (9)

где m_{π} – масса протектора, кг;

 $I_{\text{п.3}}$ – средняя сила тока протекторной защиты, A;

η – коэффициент полезного действия протектора (таблица 1).

Это уравнение предполагает полное растворение протектора. С учетом реальных условий работы защитной системы, полученное значение уменьшается пропорционально коэффициенту использования материала протектора К (в зависимости от вида использованного сплава он колеблется от 0,75 до 0,9). В связи с этим реальное время работы протектора составляет:

$$t_{\rm np} = K * \tau_{\rm n} \tag{10}$$

Таблица 1 – Общая электрохимическая характеристика протекторных сплавов

	Металл — основа протекторного сплава				
Показатели	Zn	Mg	Al		
Стандартный потенциал металла—основы, В Стационарный потенциал протектора относи- тельно медносульфатного электрода сравне- ния, В	0,76	2,38	1,66		
в почве*	От —0,9 до —1,1	От —1,4 до —1,6	От —0,9 до —1,2		
в морской воде	-1,1	—1,55 — —1,75	-1,0 — $-1,2$		
Э. д. с. пары сталь $**$ — протектор, В	0,35—0,55	0,85-1,20	0,35—0,65		
Теоретическая токоотдача, $A \cdot c/\kappa r$	295,2·10 ⁴	792 - 104	1072,8 · 10 ⁴		
Практическая токоотдача, А·с/кг	(280—290)·10 ⁴	(395-—430)·10 ⁴	(540—870)·10 4		
К. п. д. протектора, %	До 95	50—55	50—80		
Теоретический расход материала, мг/($A \cdot c$)	0,339	0,126	0,093		
Реальный расход материала, мг/(A \cdot c)	0,38	0,25	0,11-0,18		

^{*} Протектор находится в заполнителе. ** Стационарный потенциал стали в среднем равен —0,55 В относительно медносульфатного электрода сравнения.

1.

2. Таблица 2 – Состав и область применения заполнителей

Состав заполнителя, % (масс)	Применение
Бентонит 50, гипс 25, MgSO ₄ ·7H ₂ O 25	Для магниевых и цинковых протекторов, находящихся в почвах с удельным сопротивлением менее 20 Ом·м
Бентонит 50, гипс 50	Для магниевых протекторов, помещен- ных в почвы с удельным сопротивле- нием 20—100 Ом·м
Бентонит 20, гипс 75, Na ₂ SO ₄ ·10H ₂ O 5 Бентонит 90, NaCl 5, Ca(OH) ₂ 5	То же Для алюминиевых протекторов

Таблица 3 – Величины, которые необходимо рассчитать

S1, M² S3, M² Защитная плотность тока, Јп.т. А/M² R1A, OM RA гр., OM RA гр., OM Сила тока от группы протекторов, Іп.з. гр., А Необходимое количество протекторов в группе, п шт Масса протектора, т. кг Срок службы протектора
--

$$\begin{array}{l} 1 \text{ - } V_{\text{III}} = 4/3 \ \pi r^3 = \pi/6D^3, \quad S_{\text{III}} = 4\pi r^2 = \pi D^2. \\ 2 \text{ - } I_{\text{II}.3.1} = U/(R_{\text{pe}_3} + R_{\text{A}}) \ ; \ U - \text{таблица $N\!\!\!\!\text{o}$ 1} \end{array}$$

3 -
$$J_{\text{II.T}} = I/S$$
; A/M^2 (11)

4 - $n = I/I_{\pi 31}$;

5 - $R_{A rp.}$ = $R_A/(n * β)$, O_M

где β – коэффициент, учитывающий взаимодействие протекторов в группе, β = 0,8.

$$6 - I_{\text{п.з.rp}} = U/(R_{\text{pes}} + R_{\text{A rp}})$$

Количество протекторов в группе подбирается таким образом, чтобы суммарная сила тока от обеих групп протекторов превышала величину тока $I_{\text{п.з.}}$, необходимой для достижения защитного потенциала $U_{\text{заш}} = -0.85~\text{B.}$

Данные для расчёта:

ЭДС пары СТАЛЬ – ПРОТЕКТОР: Zn - 0.5 B; Mg - 1.0 B; Al - 0.5 B.

КПД протектора (η): Zn – 0,9; Mg – 0,5; Al – 0,7.

Коэффициент использования материала протектора K = 0.8.

Расчет параметров станции катодной защиты

Стальной трубопровод длиной L м, наружный диаметр D_z , м толщиной стенки δ , м, используется для снабжения промышленного предприятия технической водой. Для антикоррозионной защиты наружная поверхность трубопровода покрыта асфальтобитумной изоляцией с армировкой из стекловолокна, а также катодная защита. Почва на трассе трубопровода характеризуется очень большой агрессивностью — среднее сопротивление грунта ρ_r , Oм*м. Трасса трубопровода удалена от городских кварталов. Параметры катодной защиты определяются математическими расчётами.

1. Определяем значение продольного сопротивления участка трубопровода длиной в 1 м. ($\rho_{\text{стали}} = 1,35*10^{-7} \text{ Om*m}$):

$$\mathbf{R}_{\mathbf{m}} = \frac{\rho_m}{\pi (D_z - \delta) \times \delta}, \mathbf{Om} \mathbf{x} \mathbf{m}; \text{где}$$
 (1)

 ρ_{m-} удельное сопротивление металла, Ом*м;

 $\mathbf{D}_{\mathbf{z}}$ – внешний диаметр трубы, м;

 δ – толщина стенки трубы, м;

2. Асфальтобитумное покрытие за довольно короткое время (несколько месяцев эксплуатации) теряет свои изоляционные свойства, поэтому принимаем удельное сопротивление изоляции $\mathbf{R}'_{\mathbf{n}}$ (таблица 1).

Переходное сопротивление изоляции изоляции на единицу длины трубопровода составляет:

$$\mathbf{R}_{\mathbf{H}} = \frac{R_u}{\pi \times D_z} \quad , \mathbf{OM} \times \mathbf{M}$$
 (2)

3. Определяем коэффициент распределения тока:

$$\alpha = \sqrt{R_m / R_u} \cdot M^{-1} \tag{3}$$

4. Определяем эффективное сопротивление трубопровода:

$$\mathbf{R}_{\mathbf{K}} = \frac{1}{2} \times \sqrt{R_m \times R_u}$$
, OM (4)

Средний стационарный потенциал трубопровода составляет -0.55 В относительно медносульфатного электрода, защитный потенциал -0.85 В, а потенциал защиты в точке дренажа не может быть отрицательнее -1.2 В. Длина участка трубы, защищаемой отдельной станцией (удвоенный радиус защиты) равна:

$$\mathbf{l} = \frac{4.6}{\alpha} \times \lg \frac{\Delta E_0}{\Delta E_m} = \frac{4.6}{\sqrt{\frac{R_m}{R_u}}} \times \lg \frac{\Delta E_0}{\Delta E_m},$$
 где (5)

где: ΔE_0 – изменение потенциала в точке дренажа, B;

 ΔE_m – разность между стационарным и защитными потенциалами, В.

1. Определяем количество СКЗ, необходимых для защиты всего трубопровода:

$$\mathbf{N} = \frac{L}{l}, \mathbf{M} \tag{6}$$

2. Определяем силу тока для отдельной станции:

$$\mathbf{I}_{\kappa,3} = \frac{\Delta E_0}{R_k + \frac{\rho_z}{2\pi y}}, \text{ A; } \text{ где}$$
 (7)

у – расстояние между анодом и трубопроводом, м

 $\mathbf{R}_{\mathbf{K}}$ – эффективное сопротивление конструкции, Ом

 ρ_{Γ} – удельное сопротивление грунта, Ом х м

3. Определяем выходное напряжение СКЗ:

$$\mathbf{U} = \mathbf{I}_{\kappa,3} \left(\mathbf{R}_{K} + \mathbf{R}_{A} + \mathbf{R}_{np} \right), \mathbf{B} \quad \text{где:}$$
 (8)

 ${\bf R}_{\bf A}$ – сопротивление растеканию тока анода, Ом;

 $\mathbf{R}_{\mathsf{пp}}$ – сопротивление проводников, Ом.

4. Сопротивление растеканию тока для группы анодов:

$$\mathbf{R}_{\mathbf{ABept}} = \frac{0.16\rho_{s}}{n \times l} \times \left(2.3 \times \lg \frac{4l_{s}}{r} - 1 + \frac{2l_{s}}{m} \times 2.3 \times \lg(0.656 \times n)\right); \text{ Om}, (9)$$

где:

n — число анодов в группе;

 \mathbf{l}_3 – длина анода вместе с заполнителем, **м**;

 ${\bf r}_3$ – радиус анода вместе с заполнителем, **м**;

m – расстояние между соседними анодами в группе, **м**

Аноды изготовлены из сплава Pb-2%, Ag. Используются аноды группами. В каждой группе **n** анодов, соединённых параллельно. Каждый анод помещён в отдельную засыпку из гранулированного графита размером \mathbf{l}_3 и \mathbf{d}_3 .

5. Сопротивление проводников:

$$\mathbf{R}_{\mathbf{np}} = \frac{\rho_{Al} \times y}{S_{np}} \quad , \mathbf{Om}; \tag{10}$$

где:

 $\rho_{Al} = 0.27 \times 10^{-7} \text{ Om x m}$

у – расстояние между анодом и трубопроводом, м;

 S_{np} – площадь поперечного сечения проводника, м².

Задания по теме «Выбор оптимальных коррозионно-стойких материалов для эксплуатации в заданных условиях»

- Для изготовления арматуры, работающей в морской воде, выбрать оптимальный конструкционный материал из следующих марок: AMr1, БрA5, 20X13.
- Для изготовления деталей, испытывающих значительные механические нагрузки в среде оксида углерода при температуре 100° C, выбрать оптимальный конструкционный материал из следующих марок: БрБ2, Сталь 25, 30ХМА.
- Для изготовления деталей, испытывающих значительные механические нагрузки в среде сернистого газа при температуре 400° C, выбрать оптимальный конструкционный материал из следующих марок: 20X2H4A, 30X13, 12X18H10T;
- Для изготовления трубопроводов, работающих в контакте с водородом при температуре 300° C, выбрать оптимальный конструкционный материал из следующих марок: Сталь20, 30XMA, $37X12H8\Gamma8M\Phi Б$.

7. Перечень учебных изданий, необходимых для освоения дисциплины.

а) печатные издания:

- 1. Коррозия и методы защиты: учеб. пособие / С.И.Гринева [и др.], СПбГТИ(ТУ). Каф. теорет. основ материаловедения. СПб., 2012. 96 с.
- 2. Теоретические и практические основы химического сопротивления материалов: лабораторный практикум / С.И.Гринева [и др.], СПбГТИ(ТУ). Каф. теорет. основ материаловедения. СПб., 2013. 51 с.
- 3. Коробко, В.Н. Электрохимическая защита от коррозии: метод. указ. / В.Н.Коробко, С.В.Мякин, М.М.Сычев СПбГТИ(ТУ). Каф. теорет. основ материаловедения. СПб., 2013.-55 с.
- 4. Материаловедение и технологии современных и перспективных материалов: лабораторный практикум / М.М.Сычев [и др.] СПб.: СПбГТИ(ТУ), 2013. 161 с.
- 5. Швейцер, Ф.А. Коррозия пластмасс и резин: / Ф.А. Швейцер. СПб.: «НОТ», $2010.-638~\mathrm{c}.$
- 6. Жук, Н.П. Курс теории коррозии и защиты металлов: учебное пособие для вузов / Н.П. Жук. М.: «Альянс». 2006. 472 с.
- 7. Терентьев, В.И. Борьба с коррозией в системах водоснабжения: / В.И. Терентьев, С.В. Караван, Н.М. Павловец. СПб.: «Проспект науки». 2007. 324с.
- 8. Попова, А.А. Методы защиты от коррозии: Курс лекций: учебное пособие для вузов по программе бакалавриата по направлению подготовки "Строительство" (профили "Промышленное и гражданское строительство", "Городское строительство") / А. А. Попова. 2-е изд., перераб. и доп. СПб.; М.; Краснодар: Лань, 2014. 272 с.

б) электронные издания

- 1. Материаловедение и технологии современных и перспективных материалов: лабораторный практикум / М.М.Сычев [и др.] СПб.: СПбГТИ(ТУ), 2013. 161 с.
- 2. Коробко, В.Н. Электрохимическая защита от коррозии: метод. указ. / В.Н.Коробко, С.В.Мякин, М.М.Сычев СПбГТИ(ТУ). Каф. теорет. основ материаловедения. СПб., 2013.-55 с.
- 3. Швейцер, Ф.А. Коррозия пластмасс и резин: / Ф.А. Швейцер. СПб.: «НОТ», $2010.-638~\mathrm{c}$. (ЭБС)

4. Попова, А.А. Методы защиты от коррозии: Курс лекций: учебное пособие для вузов по программе бакалавриата по направлению подготовки "Строительство" (профили "Промышленное и гражданское строительство", "Городское строительство") / А. А. Попова. - 2-е изд., перераб. и доп. - СПб.; М.; Краснодар: Лань, 2014. - 272 с. (ЭБС)

8. Перечень электронных образовательных ресурсов, необходимых для освоения дисциплины.

Интернет-ресурсы: проводить поиск в различных системах, таких как www.yandex.ru, www.google.ru, www.rambler.ru, www.yahoo.ru и использовать материалы сайтов, рекомендованных преподавателем на лекционных занятиях.

С компьютеров института открыт доступ к:

<u>www.elibrary.ru</u> - eLIBRARY - научная электронная библиотека периодических изданий;

<u>http://e.lanbook.com</u> - Электронно-библиотечная система издательства «Лань», коллекции «Химия» (книги издательств «Лань», «НОТ»), «Нанотехнологии» (книги издательства «Бином. Лаборатория знаний»);

<u>www.consultant.ru</u> - КонсультантПлюс - база законодательных документов по РФ и Санкт-Петербургу;

<u>www.scopus.com</u> - База данных рефератов и цитирования Scopus издательства Elsevier:

<u>http://webofknowledge.com</u> - Универсальная реферативная база данных научных публикаций Web of Science компании Thomson Reuters;

http://iopscience.iop.org/journals?type=archive, http://iopscience.iop.org/page/subjects - Издательство IOP (Великобритания);

www.oxfordjournals.org - Архив научных журналов издательства Oxford University Press:

<u>http://www.sciencemag.org/</u> - Полнотекстовый доступ к журналу Science (The American Association for the Advancement of Science (AAAS));

http://www.nature.com - Доступ к журналу Nature (Nature Publishing Group);

<u>http://pubs.acs.org</u> - Доступ к коллекции журналов Core + издательства American Chemical Society;

http://journals.cambridge.org - Полнотекстовый доступ к коллекции журналов
 Cambridge University Press.

9. Методические указания для обучающихся по освоению дисциплины.

Все виды занятий по дисциплине «Химическое сопротивление материалов» проводятся в соответствии с требованиями следующих СТП:

СТП СПбГТИ 040-02. КС УКДВ. Виды учебных занятий. Лекция. Общие требования;

СТО СПбГТИ 018-2014. КС УКДВ. Виды учебных занятий. Семинары и практические занятия. Общие требования к организации и проведению.

СТП СПбГТИ 048-2009. КС УКВД. Виды учебных занятий. Самостоятельная планируемая работа студентов. Общие требования к организации и проведению.

Планирование времени, необходимого на изучение данной дисциплины, лучше всего осуществлять на весь семестр, предусматривая при этом регулярное повторение пройденного материала.

Основными условиями правильной организации учебного процесса для студентов являются:

плановость в организации учебной работы;

серьезное отношение к изучению материала;

постоянный самоконтроль.

На занятия студент должен приходить, имея знания по уже изученному материалу.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине.

10.1. Информационные технологии.

В учебном процессе по данной дисциплине предусмотрено использование информационных технологий:

чтение лекций с использованием слайд-презентаций; взаимодействие с обучающимися посредством ЭИОС.

10.2. Программное обеспечение.

Для проведения занятий имеются персональные компьютеры с программным обеспечением:

- Windows,
- OpenOffice.

10.3. Базы данных и информационные справочные системы.

- 1. http://prometeus.nse.ru база ГПНТБ СО РАН.
- 2. http://borovic.ru база патентов России.
- 3. http://1.fips.ru/wps/portal/Register Федеральный институт промышленной собственности
 - 4. http://google/com/patent- база патентов США.
 - 5. http://freepatentsonline.com- база патентов США.
 - 6. http://patentmatie.com/welcome база патентов США.
 - 7. http://patika.ru/Epasenet_patentnie_poisk.html европейская база патентов.
 - 8. http://gost-load.ru- база ГОСТов.
 - 9. http://worlddofaut.ru/index.php база ГОСТов.
 - 10. http://elibrary.ru Российская поисковая система научных публикаций.
 - 11. http://springer.com англоязычная поисковая система научных публикаций.
 - 12. http://dissforall.com база диссертаций.
 - 13. http://diss.rsl.ru база диссертаций.
 - 14. http://webbook.nist.gov/chemistry NIST Standard Reference Database.
 - 15. http://riodb.ibase.aist.go.jp/riohomee.html база спектров химических соединений.
 - 16. http://markmet.ru марочник сталей.

11. Материально-техническое обеспечение освоения дисциплины в ходе реализации образовательной программы.

Для проведения лабораторных занятий используется лаборатория, оснащенная вытяжной вентиляцией, оборудованием и материалами, необходимыми для проведения лабораторного практикума.

Материально-техническое обеспечение дисциплины:

- Электронные аналитические весы
- Образцы материалов для проведения испытаний на коррозионную стойкость
- Муфельные печи
- Сушильные шкафы
- Инструменты для измерения геометрических размеров образцов: электронные штангенциркули, магнитные толщиномеры
- рН-метры
- водородные коррозиметры

- Растворы кислот, щелочей и солей
- Химическая посуда
- Электрические нагреватели
- Электроизмерительные приборы
- Компьютеры

12. Особенности освоения дисциплины инвалидами и лицами с ограниченными возможностями здоровья.

Для инвалидов и лиц с ограниченными возможностями учебные процесс осуществляется в соответствии с Положением об организации учебного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья СПбГТИ(ТУ), утвержденным ректором 28.08.2014.

Фонд оценочных средств для проведения промежуточной аттестации по дисциплине «Химическое сопротивление материалов»

1. Перечень компетенций и этапов их формирования.

Индекс компетенции	Содержание	Этап формирования
ПК-1	Способен использовать на практике современные представления о влиянии микро- и нано-структуры на свойства материалов, их взаимодействии с окружающей средой, полями, энергетическими частицами и излучением.	промежуточный
ПК-6	Способен обоснованно использовать знания основных типов металлических, неметаллических наноструктурированных и композиционных материалов различного назначения, в том числе наноматериалов для решения профессиональных задач.	промежуточный

2. Показатели и критерии оценивания компетенций на различных этапах их формирования, шкала оценивания

Код и наименование	Показатели сформированности	Критерий		НИ СФОРМИРОВАНІ	
индикатора достижения	(дескрипторы)	оценивания	`	ие выраженности дескр	рипторов)
компетенции			«удовлетворительно»	«хорошо»	«отлично»
			(пороговый)	(средний)	(высокий)
ПК-1.4	Знает классификацию и	Ответы на	Знает общую	Знает механизмы	Способен оценивать
Исследования	механизмы коррозионных	вопросы	классификацию	возникновения	риск возникновения
поверхности	разрушений различных классов	№ 1-19	коррозионных	различных видов	различных видов
материалов опираясь	материалов, а также основные	к зачету	разрушений	коррозионных	коррозии с учетом
на фундаментальные	факторы, влияющие на их		материалов и	разрушений	конкретных
знания о микро- и	коррозионную стойкость		важнейшие		факторов
нано- материалах.	материалов (3Н-1)		факторы, влияющие		
			на коррозионную		
			стойкость		
	Знает методы предотвращения	Ответы на	Имеет представ-	Знает методы	Способен осуществ-
	коррозионных разрушений при	вопросы	ление об основных	предотвращения	лять оптимальный
	проектировании оборудования,	№4-15, 28-40	методах	коррозии в	выбор методов
	сооружений и конструкций (ЗН-	к зачету	предотвращения	конкретных	предотвращения
ПК-1.5	2)		коррозии	ситуациях	коррозии
Опора на	Умеет проводить оценку и	Ответы на	Имеет представ-	Умеет проводить	Способен проводить
современные	выполнять расчеты показателей	вопросы	ление об основных	расчет	оценку и прогнозиро-
теоретические знания	коррозионной стойкости	№22-26 к	показателях	показателей	вать коррозионную
в своей практической	материалов (У-1)	зачету	коррозионной	коррозионной	стойкость
деятельности	,	Отчеты о	стойкости	стойкости	материалов
		лаборатор-			
		ных работах			

ПК-6.6 Выбор материалов	Владеет навыками диагностики и оценки риска возникновения коррозионных разрушений, проведения испытаний материалов и элементов оборудования и конструкций на коррозионную стойкость (H-1) Умеет осуществлять оптимальный выбор материалов	Ответы на вопросы №20-24, 28 к зачету Отчеты о лабораторных работах Ответы на вопросы	Имеет представление о способах диагностики коррозии и испытаний на коррозионную стойкость Имеет представление о	Владеет навыками испытаний материалов на коррозионную стойкость Знает основные критерии выбора	Способен самостоятельно проводить комплексную диагностику коррозионных разрушений Способен осуществлять
для решения конкретных профессиональных задач с учётом их свойств и экономических соображений	для изготовления оборудования, сооружений и конструкции по критериям максимальной коррозионной стойкости с учетом характера коррозионной среды и условий эксплуатации (У-2)	№5-14, 16,17, 27, 30 к зачету Отчеты о лаборатор- ных работах	видах материалов с повышенной коррозионной стойкостью	коррозионно- стойких материалов с учетом конкретных требований	оптимальный выбор коррозионно-стойких материалов с учетом характера коррозионной среды и условий эксплуатации

Шкала оценивания соответствует СТО СПбГТИ(ТУ):

По дисциплине промежуточная аттестация проводится в форме зачёта. Для получения зачёта должен быть достигнут «пороговый» уровень сформированности компетенций.

3. Вопросы для подготовки к зачету

а) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-1:

- 1. Сущность коррозии и причиняемый ею ущерб.
- 2. Классификация коррозионных процессов по характеру (локализации) разрушений.
- 3. Классификация коррозионных процессов по характеру коррозионной среды и механизмам протекания.
- 4. Виды и особенности процессов химической коррозии.
- 5. Кислородная коррозия.
- 6. Коррозия в атмосфере сернистых газов
- 7. Водородная и карбонильная коррозия.
- 8. Условия образования сплошных устойчивых пассивирующих слоев продуктов газовой коррозии на поверхности материалов. Кинетика роста слоев продуктов коррозии.
- 9. Коррозия в жидкостях-неэлектролитах. Коррозионные процессы в нефтепереработке
- 10. Механизм электрохимической коррозии.
- 11. Причины возникновения электрохимической неоднородности металлов.
- 12. Явления поляризации и деполяризации при электрохимической коррозии.
- 13. Атмосферная коррозия.
- 14. Морская коррозия.
- 15. Виды подземной коррозии.
- 16. Внешние факторы, влияющие на интенсивность коррозии.
- 17. Внутренние факторы, влияющие на интенсивность коррозии.
- 18. Особые конструктивно-геометрические факторы, оказывающие влияние на коррозию
- 19. Коррозия под действием дополнительных механических воздействий

б) Вопросы для оценки знаний, умений и навыков, сформированных у студента по компетенции ПК-6:

- 20. Методы диагностики коррозионных разрушений.
- 21. Методы испытаний материалов на коррозионную стойкость.
- 22. Косвенные показатели коррозионной стойкости и методы их определения.
- 23. Весовые показатели коррозионной стойкости и методы их определения.
- 24. Объемные показатели коррозионной стойкости и методы их определения.
- 25. Электрохимические показатели коррозионной стойкости и методы их определения.
- 26. Стандарты в области обеспечения коррозионной стойкости и защиты от коррозии
- 27. Принципы оптимального выбора материалов и их сочетаний по критерию максимальной коррозионной стойкости.
- 28. Учет конструктивно-геометрических факторов, влияющие на риск возникновения и интенсивность протекания коррозии.
- 29. Общая классификация методов защиты от коррозии.
- 30. Коррозионно-стойкое легирование.
- 31. Общая классификация защитных антикоррозионных покрытий. Подготовка поверхности к нанесению покрытий.
- 32. Лакокрасочные покрытия разновидности, преимущества и недостатки.

- 33. Металлические защитные покрытия методы нанесения, свойства. Катодные и анодные покрытия.
- 34. Стеклоэмалевые защитные покрытия условия формирования, состав, свойства, преимущества и недостатки.
- 35. Полимерные и резиновые защитные покрытия.
- 36. Оксидные и фосфатные защитные покрытия.
- 37. Протекторная защита от коррозии.
- 38. Катодная и анодная электрохимическая защита.
- 39. Защита от коррозии посредством удаления агрессивных компонентов из окружающей среды и использования защитных атмосфер.
- 40. Методы ингибирования коррозии.

4. Методические материалы для определения процедур оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Промежуточная аттестация по дисциплине проводится в соответствии с требованиями СТО СПбГТИ(ТУ) 016-2015. КС УКДВ. Порядок организации и проведения зачетов и экзаменов.