Центр дополнительного образования СПбГТИ(ТУ) +7(812) 494-92-43; cdo@technolog.edu.ru

Документ подписан простой электронной подписью

Информация о владельце: ФИО: Шевчик Андрей Павлович

Должность: Ректор

Дата подписания: 18.06.2024 16:22:39 Уникальный программный ключ. высшего образования

476b4264da36714552dc83748d2961662babc012

«Санкт-Петербургский государственный технологический институт (технический университет)» (СПбГТИ(ТУ))

ОПИСАНИЕ¹

МИНОБРНАУКИ РОССИИ

дополнительной профессиональной программы повышения квалификации (далее - программа)

«Квантово-химические подходы к оптимизации процессов синтеза низкоразмерных систем методом молекулярного наслаивания»

1. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

знать:

- основные принципы метода молекулярного наслаивания (МН);
- физико-химические основы получения композиционных материалов (А/03.6);
- возможности технологии молекулярного наслаивания по синтезу нанопокрытий заданного состава и строения;
- методы проектирования технологических процессов и режимов производства с использованием квантово-химических расчетов (для должностей: главный технолог; инженертехнолог (технолог));
- основные особенности аппаратного и программного обеспечения для реализации квантовохимических расчетов.

уметь:

- осуществлять анализ и интерпретацию результатов квантово-химического расчета низкоразмерных систем на поверхности твердофазных матриц;
- оценивать тенденции влияния технологических параметров процесса молекулярного наслаивания на состав продуктов на основе результатов квантово-химического моделирования;
- подбирать технологические параметры процесса производства наноструктурированных композиционных материалов (А/03.6).

владеть навыками:

- построения квантово-химических моделей процессов, протекающих на различных стадиях молекулярного наслаивания;
- проведения квантово-химических расчетов;
- использования математического аппарата обработки и анализа квантово-химических данных.

¹ Составлено на основании разделов 2, 5, 6, 7 утвержденной программы и установленного шаблона

2. РАБОЧИЕ ПРОГРАММЫ УЧЕБНЫХ ПРЕДМЕТОВ, КУРСОВ, ДИСЦИПЛИН (МОДУЛЕЙ), ПРАКТИК, СТАЖИРОВОК, РАЗДЕЛОВ, ТЕМ

2.1 Содержание лекций

№ темы	Название темы	Объем, час		
1	1 Синтез наноматериалов и наноструктур по технологии молекулярн			
	наслаивания			
	Остовно-функциональное строение твердого вещества. Реакции			
	функционалов и остовные реакции твердого вещества. Принципы метода			
	молекулярного наслаивания. Формирование многослойных и многозонных			
	структур методом молекулярного наслаивания. Программирование состава			
	и толщины зон с точностью в один монослой полиэдров.	4		
	Получение функциональной поверхности с заданной реакционной способностью. Регулирование физико-химических свойств поверхностных	1		
	структур. Регулирование параметров пористой структуры твердого тела и			
	его приповерхностного слоя. Термическая устойчивость тонкослойных			
	систем.			
	Проведение синтеза оксидных, нитридных и сульфидных покрытий.			
	Травление атомарного слоя (Atomic Layer Etching).			
2	Основные принципы и методология проведения квантово-химических	1		
_	расчетов	1		
	Основы квантовой механики. Теория Планка. Корпускулярно-волновой			
	дуализм. Принцип Гейзенберга. Уравнение Шредингера. Квантовые числа.			
	Жесткий ротатор, гармонический осциллятор. Квантовая частица в потенци-			
	альной яме, туннелирование. Атом водорода. Электронные орбитали, набор			
	квантовых чисел. Атом гелия, межэлектронное отталкивание, кулоновское			
	и обменное взаимодействие.			
	Квантово-химические программные пакеты. Принципиальные возможности	2		
	прогнозирования состава, строения и свойств химических объектов с			
	помощью квантовой химии. Аппаратные ограничения и пределы. Методы			
	анализа выходного файла квантово-химического расчета. Ключевые слова			
	и заголовки для поиска данных. Оценка корректности завершения расчета.			
	Методы учета электронной корреляции. Поправки теории возмущений	1		
	Меллера-Плессе различного порядка. Конфигурационное взаимодействие.			
	Методы мультиконфигурационного самосогласованного поля и активное			
	пространство. Методы связанных кластеров. Методы теории функционала плотности. Обменная и корреляционная составляющие. Гибридные			
	функционалы.			
3		1		
3	Прогнозирование спектральных характеристик молекулярных и твердофазных объектов	1		
	Колебательные спектры. Гармоническое приближение, ангармонические поправки. Расчет вероятности поглощения и комбинационного рассеяния.			
	поправки. Расчет вероятности поглощения и комоинационного рассеяния. Спектры оптического поглощения, многодетерминантное приближение CIS			
	и TDDFT, расчет характеристической энергии и вероятности поглощения.			
	Прогнозирование спектров ЯМР.			
4	Прогнозирование химических превращений на поверхности	3		
	твердофазных матриц методами квантовой химии			
	Феноменологические модели: химическая кинетика, химическая			
	термодинамика. Правило фаз Гиббса. Метод поиска экстремумов			
	характеристических функций.			
	паракториоти тоских функции.	<u> </u>		

Центр дополнительного образования СПбГТИ(ТУ) +7(812) 494-92-43; cdo@technolog.edu.ru

№ темы	Название темы	Объем, час
Всего		10

2.2 Содержание лабораторных занятий

№ темы	Содержание занятия	Объем, час	
2	Подготовка расчетных заданий и выполнение квантово-химических расчетов для низкомолекулярных систем: выбор базисного набора АО и уровня теории.		
	Расчетный анализ химического и электронного строения низкоразмерных систем: межатомные расстояния, порядок химических связей, электронные энергетические уровни. Полная энергия системы.	1	
3	Прогноз колебательных спектров для низкоразмерных структур на поверхности твердой подложки. Оценка способов спектральной идентификации поверхностных центров		
4	Термодинамический анализ химических процессов между активными центрами на поверхности твердофазных подложек с газофазными реагентами, априорный выбор оптимальной температуры синтеза и давления паров реагента.		
Всего		6	

3. ФОРМЫ АТТЕСТАЦИИ, ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

3.1. Формы контроля и аттестации, оценочные материалы по учебным предметам, курсам, дисциплинам (модулям), практикам, стажировкам, разделам, темам

Промежуточная аттестации и текущий контроль в программе не предусмотрены.

3.2.Оценочные материалы для итоговой аттестации

Итоговая аттестация проводится в форме зачета в виде устного ответа по основным темам программы.

3.2.1 Вопросы к итоговой аттестации по освоению программы

- 1. Реакции молекулярного наслаивания как химические превращения в гомологическом ряду твердых веществ.
- 2. Технологические стадии осуществления одного цикла молекулярного наслаивания и технологические параметры при организации процесса МН.
- 3. Схема экспериментальной установки с реактором проточного типа и описание процесса синтеза оксидного покрытия.
- 4. Уравнение Шредингера. Квантовые числа. Жесткий ротатор, гармонический осциллятор.
- 5. Квантово-механическое описание многоэлектронных систем. Метод ЛКАО. Метод самосогласованного поля.
- 6. Приближение Хартри-Фока (XФ). Проблема сходимости XФ. Особенности реализации метода XФ для систем с открытыми оболочками.
- 7. Атомный базис (слэтеровский и гауссовский). Размер базиса. Валентное расщепление. Поляризационные и диффузные функции. Хартри-Фоковский предел.
- 8. Методы теории функционала плотности. Обменная и корреляционная составляющие. Гибридные функционалы.
- 9. Кластерное описание твердых тел. Псевдоатомы. Сходимость по размеру кластера.
- 10. Квазимолекулярные модели наноструктурированных материалов. Оценки размерных эффектов методами квантовой химии.
- 11. Перечень основных задач квантово-химических расчетов. Прогнозируемые свойства и характеристики.
- 12. Принципы анализа результатов квантово-химических расчетов. Программное обеспечение для анализа и визуализации квантово-химических данных.
- 13. Построение прогноза структуры веществ и материалов. Алгоритмы оптимизации. Зависимость строения от уровня теории. Понятие расчетной релаксации.
- 14. Прогнозирование колебательных спектров. Гармоническое приближение, ангармонические поправки. Расчет вероятности поглощения и комбинационного рассеяния.
- 15. Оценка химических равновесий с помощью квантово-химического моделирования. Расчет и анализ термодинамических потенциалов при различной температуре.

4. ОРГАНИЗАЦИОННО-ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ

4.1. Учебно-методическое обеспечение программы

4.1.1. Основная литература:

- 1. Бутырская, Е.В. Компьютерная химия: основы теории и работа с программами Gaussian и Gauss View / Е.В.Бутырская.- Москва: СОЛОН-Пресс, 2011.- 218 с. ISBN 978-5-91359-095-4
- 2. Грибов, Л.А. Элементы квантовой теории строения и свойств молекул: Учебное пособие / Л.А.Грибов.- Долгопрудный: Интеллект, 2010.- 310 с. ISBN 978-5-91559-082-2
- 3. Ермаков, А.И. Квантовая механика и квантовая химия: учебное пособие для вузов / А.И. Ермаков.- Москва: Юрайт, 2010.- 555 с. ISBN 978-5-9916-0587-8. ISBN 978-5-9692-0331-0 (ИД Юрайт)
- 4. Чернышев, С.Л. Моделирование и классификация наноструктур / С.Л.Чернышев.-Москва: Книжный дом "ЛИБРОКОМ", 2011.- 210 с. - ISBN 978-5-397-01466-3
- 5. Фундаментальные и прикладные основы нанотехнологии молекулярного наслаивания: Учебное пособие. / С.И.Кольцов, А.А.Малыгин, А.А.Малков, Е.А.Соснов. Санкт-Петербург: СПбГТИ(ТУ), 2021. 279 с.

4.1.2. Дополнительная литература

- 1. Малыгин, А.А. Химическая сборка функциональных наноматериалов методом молекулярного наслаивания: конспект лекций / А.А.Малыгин.- Санкт-Петербург: СПбГТИ(ТУ), 2012.- 74 с.
- 2. Барановский, В.И. Квантовая механика и квантовая химия: учебное пособие / В.И. Барановский. Москва: Academia, 2008. 383 с. ISBN 978-5-7695-3961-9
- 3. Гусев, А.И. Наноматериалы. Наноструктуры. Нанотехнологии / А.И.Гусев. Москва: Физматлит, 2007. 415 с. ISBN 978-5-9221-0582-8
- 4. Елисеев, А.А. Функциональные наноматериалы / А.А.Елисеев, А.В.Лукашин; под ред. Ю.Д.Третьякова. Москва: Физматлит, 2010. 456 с. ISBN 978-5-9221-1120-1
- 5. Суздалев, И.П. Нанотехнология: Физико-химия нанокластеров, наноструктур и наноматериалов / И.П.Суздалев. Изд. 2-е испр. Москва: Книжный дом «ЛИБРОМ», 2009. 592 с. ISBN 978-5-397-00217-2
- 6. Рамбиди, Н.Г. Физические и химические основы нанотехнологий / Н.Г.Рамбиди, А.В. Березкин. Москва: Физматлит, 2009. 454 с. ISBN 978-5-9221-0988-8.

4.2 Материально-техническое обеспечение программы

4.2 Marchaelbho Teann teerde docene tenne iiporpamiibi						
Наименование специализированных аудиторий, кабинетов, лабораторий	Вид занятий	Наименование оборудования, программного обеспечения				
Аудитория	лекции	Компьютер с выходом в локальную сеть СПбГТИ				
		(ТУ) и в Интернет, мультимедийный проектор,				
		экран, доска.				
		Программные пакеты MathCAD, MS EXCEL,				
		GAUSSIAN, GAUSSVIEW				
Технологическая	лабораторные	Компьютерный класс с выходом в локальную сеть				
лаборатория	занятия	СПбГТИ (ТУ) и в Интернет.				
		Персональный компьютер преподавателя.				
		Программные пакеты MathCAD, MS EXCEL, MS				
		WORD, GAUSSIAN, GAUSSVIEW				

Центр дополнительного образования СПбГТИ(ТУ) +7(812) 494-92-43; cdo@technolog.edu.ru

4.3. Кадровые условия реализации программы

Программа реализуется квалифицированными специалистами в области получения и квантовохимического моделирования наноструктурированных композиционных материалов с заданными свойствами, в т.ч. из числа сотрудников Первого Всероссийского инжинирингового центра технологии молекулярного наслаивания (ИЦТМН) СПбГТИ(ТУ).